Field studies of gas exchange and chlorophyll fluorescence of three desert shrub species, Hedysarum fruticosum var. mongolicum, Artemisia ordosia, and Salix pasmmophylla, showed different patterns under different leaf temperature (T1) and incident photosynthetic photon flux density (PPFD). H. fruticosum var. mongolicum and A. ordosia exhibited higher PN and gs than S. pasmmophylla, especially under very high T1 (>46 °C) and high PPFD (>2 100 µmol m-2 s-1) in hot summer. The decreases of PN with the diurnal course were due mainly to stomata closure. However, PN of S. pasmmophylla was seriously depressed by very high temperature from midday to evening as shown by the negative PN in hot summer, whereas none of such depression was found in spring. Maximal spring photochemical efficiency of photosystem 2 (PS2), i.e, Fv/Fm, was the lowest at 16:00, indicating the injury of PS2 by heat at this stage. In hot summer again, all the three shrubs underwent pronounced midday depression of PN and gs, while in spring they showed a one-peak response. And the first peak appeared 2 h earlier in hot summer than in spring for all the three shrubs. It was the high temperature that led to the different patterns of gas exchange and the serious depression of PN in S. pasmmophylla. H. fruticosum var. mongolicum and A. ordosia were much more tolerant to heat and high irradiance than S. pasmmophylla, which fixed most of CO2 at the fast growing stage in spring. Nevertheless, in hot summer it had to survive the severe hot environment through strong respiration and storage of CO2 only in the early morning. and G. M. Jiang, G. J. Zhu.
Oocysts/sporocysts of Sarcocystis sp. were found in the intestinal contents of the smooth snake, Coronella austriaca I .aurenti. Common voles Microtus arvalis (Pallas), bank voles Clethrionomys glareolus (Schreber), green lizards Lacerta viridis (Laurcnti), and common wall lizards Podarcis muralis (Laurenti) were experimentally inoculated as potential intermediate hosts. Only common wall lizards were found to be susceptible intermediate hosts. Transparent, macroscopically hardly visible sarcocysts found in tail striated muscles of lizards were 480 (390-640) x 210 (190-230) pm in size 72 days post-infection. Using the light microscopy, the sarcocyst wall was about 1 pm thick with an apparent layer of villi approx. 2 pm thick. Ullraslruclurally, the primary cyst wall was characterised by spine-like villar protrusions up to 2.5 pm in length and 0.5 pm in diameter. Based on sarcocyst morphology and experimental data, the discovered Sarcocystis species is suggested to be conspccific with Sarcocystis lacertae Babudieri, 1932. A redescription of Sarcocystis lacertae is presented in this study.
The effects of chilling treatment (4 °C) under low irradiance, LI (100 μmol m-2 s-1) and in the dark on subsequent recovery of photosynthesis in chilling-sensitive sweet pepper leaves were investigated by comparing the ratio of quantum yields of photosystem (PS) 2 and CO2 assimilation, ΦPS2/ΦCO2, measured in normal air (21 % O2, NA) and low O2-air (2% O2, LOA), and by analyzing chlorophyll (Chl) a fluorescence parameters. Chilling treatment in the dark had little effect on Fv/Fm and ΦPS2/ΦCO2, but it caused the decrease of net photosynthetic rate (PN) under saturating irradiance after 6-h chilling treatment, indicating that short-term chilling alone did not induce PS2 photoinhibition. Furthermore, photorespiration and Mehler reaction also did not obviously change during subsequent recovery after chilling stress in the dark. During chilling treatment under LI, there were obvious changes in Fv/Fm and ΦPS2/ΦCO2, determined in NA or LOA. Fv/Fm could recover fully in 4 h at 25 °C, and ΦPS2/ΦCO2 increased at the end of the treatment, as determined in both NA and LOA. During subsequent recovery, ΦPS2/ΦCO2 in LOA decreased faster than in NA. Thus the Mehler reaction might play an important role during chilling treatment under LI, and photorespiration was an important process during the subsequent recovery. The recovery of PN under saturating irradiance determined in NA and LOA took about 50 h, implying that there were some factors besides CO2 assimilation limiting the recovery of photosynthesis. From the progress of reduced P700 and the increase of the Mehler reaction during chilling under LI we propose that active oxygen species were the factors inducing PS1 photoinhibition, which prevented the recovery of photosynthesis in optimal conditions because of the slow recovery of the oxidizable P700. and X.-G. Li ... [et al.].