Seedlings of Erythrina variegata Lam. exposed to flooding for 10 d showed significant reduction in height, growth rates (leaf area in plant, leaf area index, relative growth rate, and specific leaf mass), biomass, chlorophyli (Chl) and carotenoid contents, and thylakoid membrane organization. Application of triacontanol partially compensated these effects and promoted height, biomass and Chl content. Starch and sugar contents were significantly higher in leaves of flooded seedlings.
An application of different mulch materials may lead to changes in soil properties. Our previous study, focused on the impact of various mulches during the 4-year period, showed that the change in some properties can be very rapid (e.g., soil pH), but in other cases such as hydraulic properties, the changes can be gradual. To find out, whether the extension of the mulching period will further affect the studied soil properties, the experiment continued for another 2 years. Differences between values of organic carbon content (Cox), soil physical quality (Sinf), gravitational water (GW) and readily available water (RAW) of soils not covered by any mulch and under various mulches (bark chips; wood chips; wheat straw; Agrotex EKO+ decomposable matting; polypropylene fabric covered bark chips; crushed stone) were much larger than those observed in our previous study. On the other hand, the opposite trend was observed for the water stable aggregates (WSA) index or soil pH. Differences between additionally measured hydraulic conductivities at the pressure head of −2 cm and repellency index (RI) were mostly insignificant. Results indicated that organic mulches can either positively (e.g., increase WSA index and Cox, and decrease GW) or negatively (e.g., decrease Sinf and RAW, and increase RI) affect soil properties.