Four trypanorhynchs, Kotorella pronosoma (Stossich, 1901), Nybelinia cf. bisulcata (Linton, 1889), Nybelinia scoliodoni (Vijayalakshmi, Vijayalakshmi ct Gangadharam, 1996), and Dasyrhynchus pacificus Robinson, 1965 are reported for the first time from the Gulf, which is now known to harbour at least 34 different species. In addition to the range extension for the trypanorhynchs listed above, 21 new host records are reported involving 13 cestode species. Characters of the genus Kotorella Euzet et Radujkovic, 1989 are emended, Nybelinia narinari MaeCallum, 1917 is considered a junior synonym of Kotorella pronosoma (Stossich, 1901), and Heteronybelinia palliata (Linton, 1924) comb. n. is redescribed. The usefulness of the bulb ratio as a means to distinguish different tentaculariid species is discussed, and the importance of shallow water localities for the life cycle of trypanorhynch ccstodes is emphasised.
In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985- 1986 to investigate hydrologic interactions between crust patches. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients and with pyrite weathering products, thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development.