A major cause of a surface damage of the contact loading machine components (bearings, gears, cams etc.) is the rolling contact fatigue, Various methods of condition monitoring are used to detect damage of these components or specimens in the industry or during testing in laboratories. In the past decades, the acoustic emission technique has been developed into useful condition monitoring method. This paper is focused on the testing of rolling contact fatigue of the metallic materials using acoustic emission method. The methodology of testing, experimenal test-rig and preliminary results, are presented in this paper. It can be concluded, that acoustic emission technique can be applied for more accurate rolling contact fatique evaluation of material. and Obsahuje seznam literatury
The heterogeneity of water flow and solute transport was assessed during radioactive tracer infiltration experiment in a black clay loam soil using modified methods to estimate the effective cross section (ECS) and the degree of preferential flow (DPF). The results of field and numerical experiments showed that these parameters characterized the heterogeneity of water flow in the soils unequivocally. The ECS decreases non-linearly and the DPF increases linearly with an increase of the bypassing ratio (ratio of macropore flow rate to total flow rate). The ECS decreased and the DPF increased with depth, which suggests an increase in the heterogeneity of water flow with depth. The plot of the DPF against ECS values calculated from the tracer experiment data was consistent with the relationship obtained by the numerical simulation assuming preferential flow in the neighbourhood of three probes.
The cytosolic and chloroplastic isoforms of glucose-6-phosphate dehydrogenase (G6PDH) were separated and purified from barley leaves (Hordeum vulgare L.). In etiolated leaves, only the cytosolic isoform was expressed. The molecular mass of the cytosolic enzyme, G6PDH1, was 112±8 kDa and that of the chloroplast enzyme, G6PDH2, was 136±7 kDa. The Km values for glucose-6-phosphate and NADP were 0.133 and 0.041 mM for G6PDH1, and 0.275 and 0.062 mM for G6PDH2, respectively. The pH optimum was 8.2 for G6PDH1 and 7.8 for G6PDH2. The enzyme is absolutely specific for NADP. NADPH is a competitive inhibitor of the G6PDH1 in respect to glucose-6-phosphate (G6P) and NADP (Ki = 0.050 and 0.025 mM, respectively). NADPH is a competitive inhibitor of the G6PDH2 in respect to NADP (Ki = 0.010 mM), but a non-competitive inhibitor in respect to the G6P. ADP, AMP, UTP, NAD, and NADH had no effect on the activity of G6PDH. ATP inhibited the G6PDH2 activity. and A. Semenihina ... [et al.].