The imbalance of an edge e = {u, v} in a graph is defined as i(e) = |d(u)−d(v)|, where d(·) is the vertex degree. The irregularity I(G) of G is then defined as the sum of imbalances over all edges of G. This concept was introduced by Albertson who proved that I(G)\leqslant 4n^{3}/27 (where n = |V(G)|) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves the Laplacian spectral radius λ., Felix Goldberg., and Obsahuje seznam literatury