Chlorophyll a (Chl a) has an asymmetrical molecular organization, which dictates its orientation and the location of the pigment in the mature photosynthetic apparatus. Although Chl a fluorescence (ChlF) is widely accepted as a proxy for plant photosynthetic performance under countless stress conditions and across species, a mechanistic understanding of this causality is missing. Since water plays a much greater role than solvent for the photosynthetic machinery, elucidating its influence on Chl a may explain the reliable reflection of plant stress response in the ChlF signal. We examine the effect of hydration from well-watered to lethal drought on ChlF imagery results across morphologically diverse species to begin testing the impact of molecular scale hydration of Chl a on ChlF. Our results support a conceptual model where water is an integral part of the photosystems' structure and directly influences Chl a behavior leading to changes in the energy partitioning and ultimately in ChlF., C. R. Guadagno, D. P. Beverly, B. E. Ewers., and Obsahuje bibliografické odkazy
Usually, an abelian $\ell $-group, even an archimedean $\ell $-group, has a relatively large infinity of distinct $a$-closures. Here, we find a reasonably large class with unique and perfectly describable $a$-closure, the class of archimedean $\ell $-groups with weak unit which are “$\mathbb Q$-convex”. ($\mathbb Q$ is the group of rationals.) Any $C(X,\mathbb Q)$ is $\mathbb Q$-convex and its unique $a$-closure is the Alexandroff algebra of functions on $X$ defined from the clopen sets; this is sometimes $C(X)$.