This study compared the effects of salt (NaCl) stress on growth, photosynthesis and solute accumulation in seedlings of the three poplar (Populus bonatii) cultivars Populus × BaiLin-2 (BL-2), Populus × BaiLin-3 (BL-3), and Populus × Xjiajiali (XJJL). The results showed that BL-2 and BL-3 could not survive at a salinity level of 200 mM but XJJL grew well. The effect of moderate salt stress on leaf extension of the three cultivars was only slight. At a high level of salinity, however, NaCl clearly inhibited leaf extension of BL-2 and BL-3, whereas it did not affect that of XJJL, and the net photosynthetic rate (PN) in XJJL was much higher than those of BL-2 and BL-3. The lower PN of BL-2 and BL-3 might be associated with the high concentration of Na+ and/or Cl- accumulated in the leaves, which could be toxic in photosynthesis system. In summary, the greater salt-tolerance of XJJL compared with that of BL-2 and BL-3 might be explained by the higher PN and photosynthetic area, the lower Na+/K- ratio and Cl- in the leaf, and the greater accumulation of soluble sugars and SO4 2-. and W. Chen ... [et al.].
The combined effects of water status, vapour pressure deficit (VPD), and elevated temperature from heading to maturity were studied in barley. Plants growing at high VPD, either under well-watered or water deficit conditions, had higher grain yield and grain filling rate than plants growing at low VPD. By contrast, water stress decreased grain yield and individual grain dry matter at any VPD. Water regime and to a lesser extent VPD affected δ13C of plant parts sampled at mid-grain filling and maturity. The differences between treatments were maximal in mature grains, where high VPD increased δ13C for both water regimes. However, the total amount of water used by the plant during grain filling did not change as response to a higher VPD whereas transpiration efficiency (TE) decreased. The net photosynthetic rate (PN) of the flag leaves decreased significantly under water stress at both VPD regimes. However, PN of the ears was higher at high VPD than at low VPD, and did not decrease as response to water stress. The higher correlation of grain yield with PN of the ear compared with that of the flag leaf support the role of ear as the main photosynthetic organ during grain filling under water deficit and high VPD. The deleterious effects of combined moderately high temperature and drought on yield were attenuated at high VPD. and M. Sánchez-Díaz ... [et al.].