Fibroblast growth factor 21 (FGF21) is one of the members of endocrine arm of FGF family. Its actions as a glucose and lipids metabolism regulator are widely known. Although the mechanism of FGF21 action in kidneys is still under investigation, FGF21 was considered as a marker of early kidney function decline. While many researchers focused on adult subjects in this matter, there are no data regarding children. Therefore, we have investigated the relationship between plasma or urine FGF21 levels and kidney function in a group of 42 pediatric patients with chronic kidney disease (CKD). Anthropometrical parameters and blood pressure were taken, routine biochemical tests were performed. The concentration of FGF21 in serum and urine was determined by enzyme immunoassay. The results revealed significantly higher serum FGF21 concentration among children from CKD group. However, serum FGF21 level was not related to gender, proteinuria, eGFR or renal replacement therapy. Urine FGF21 concentration correlated negatively with albuminuria and positively with eGFR. Documented negative correlation of FGF21 fractional excretion and eGFR is not enough to support the role of FGF21 as a biomarker for predicting kidney disease progression in children and adolescents. Other mechanisms including local kidney FGF21 production or enhanced excretion due to higher extrarenal production may result in higher urine FGF21 concentrations.
In this paper, we prove the following statements: (1) There exists a Tychonoff star countable discrete closed, pseudocompact space having a regular-closed subspace which is not star countable. (2) Every separable space can be embedded into an absolutely star countable discrete closed space as a closed subspace. (3) Assuming $2^{\aleph _0}=2^{\aleph _1}$, there exists a normal absolutely star countable discrete closed space having a regular-closed subspace which is not star countable.