Recent studies have suggested that the hypothalamus has an important role in aging by regulating nuclear factor-κB (NF-κB)-directed gonadotropin-releasing hormone (GnRH) decline. Moreover, our previous study has shown that ischemia-reperfusion (IR) injury activates NF-κB to reduce hypothalamic GnRH release, thus suggesting that IR injury may facilitate hypothalamic programming of system aging. In this study, we further examined the role of phosphoinositide 3-kinase (PI3K)/Protein kinase B (Akt) pathway, a critical intracellular signal pathway involved in the repair process after IR, in hypoxia-reoxygenation (HR)-associated GnRH decline in vitro. We used GT1-7 cells and primarily-cultured mouse GnRH neurons as cell models for investigation. Our data revealed that the activation of the PI3K/Akt/Forkhead box protein O3a (FOXO3a) pathway protects GnRH neurons from HR-induced GnRH decline by preventing HR-induced gnrh1 gene inhibition and NF-κB activation. Our results further the understanding of the regulatory mechanisms of HR-associated hypothalamic GnRH decline.
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited. and H. D. Li ... [et al.].
A low irradiance mediated regulation of C4 metabolism during acclimation is reported for first time in Amaranthus hypochondriacus L., a NAD-ME dicot, Eleusine coracana (L.) Gaertn., an NAD-ME monocot, and Gomphrena globosa, a NADP-ME dicot. Significant decline in activities of key C4 enzymes were observed under limited irradiances in each of the species studied. When the plants were transferred to full natural irradiance, the enzyme activities were restored to originál State in 3-5 d, a similar time frame needed for acclimation to limiting irradiance. This identifies the decarboxylation reaction involving NAD-ME in Amaranthus and Eleusine or NADP-ME in Gomphrena as crucial sites of regulation under limiting irradiance.