A general theorem (principle of a priori boundedness) on solvability of the boundary value problem ${\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0$ is established, where $f\colon[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon[a,b]\to\mathbb{R}^{n\times n}$ with bounded total variation components, and $h\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to\mathbb{R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal{B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to[a,b]$ $(i=1,2)$ and $\mathcal{B}\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to\mathbb{R}^n$ are continuous operators, and $c_0\in\mathbb{R}^n$., Malkhaz Ashordia., and Obsahuje bibliografické odkazy