Two hundred and seventeen captive great apes (150 chimpanzees, Pan troglodytes; 14 bonobos, Pan paniscus; 53 western gorillas, Gorilla gorilla) and 20 personnel from thirteen European zoos and two African sanctuaries were sampled and examined in order to determine the occurrence of Enterocytozoon bieneusi and species of Encephalitozoon in faecal specimens and to compare the epidemiological situation between zoos and sanctuaries. Microsporidia were detected at all sampling sites. Sequence analyses of ITS amplicons generated by using microsporidia-specific primers determined the presence of microsporidia in 87 samples including 13 humans; since two cases of simultaneous occurrence of Encephalitozoon cuniculi and Enterocytozoon bieneusi were identified, 89 full-length ITS sequences were obtained, namely 78 Encephalitozoon cuniculi genotype I, five E. cuniculi genotype II, two E. hellem 1A and four Enterocytozoon bieneusi. No Encephalitozoon intestinalis-positive samples were identified. This is the first report of Encephalitozoon species and Enterocytozoon bieneusi genotypes in captive great apes kept under various conditions and the first record of natural infection with E. hellem in great apes. A comparison of zoos and sanctuaries showed a significantly higher prevalence of microsporidia in sanctuaries (P<0.001), raising a question about the factors affecting the occurrence of microsporidia in epidemiologically and sanitarily comparable types of facilities.
Diurnal and seasonal changes in the leaf water potential (Ψ), stomatal conductance (gs), net CO2 assimilation rate (PN), transpiration rate (E), internal CO2 concentration (Ci), and intrinsic water use efficiency (PN/gs) were studied in grapevines (Vitis vinifera L. cv. Touriga Nacional) growing in low, moderate, and severe summer stress at Vila Real (VR), Pinhão (PI), and Almendra (AL) experimental sites, respectively. In VR and PI site the limitation to photosynthesis was caused more by stomatal limitations, while in AL mesophyll limitations were also responsible for the summer decline in PN. and J. M. Moutinho-Pereira ... [et al.].
To range the satellite, we are using the train of picosecond pulses generated by Nd YAG oscillator / amplifier / second harmonic generator laser system. To establish an optimum discriminatior / timing system, the indoor and the short baseline outdoor calibration experiments were used. The experimental results indicate a limit single shot uncertainty 6cm PMS.
During the last century, the world soybean yield has been constantly enhancing at a remarkable rate. Factors limiting the soybean yield may be multiple. It is widely acknowledged that changes of root metabolism can influence aboveground characteristics, such as the seed yield and photosynthesis. In this study, we considered root bleeding sap mass (BSM) and root activity (RA) as indicators of the root growth vigour. We used 27 soybean cultivars, spanning from 1923 to 2009, to evaluate the contribution of root characteristic improvement to efficient photosynthesis and dry matter production. The BSM, RA, net photosynthetic rate (P N), and organ biomass were measured at different growth stages, such as the fourth leaf node, flowering, podding, and seed-filling stage. Our results showed that the soybean cultivars increased their biomass and P N thanks to genetic improvement. At the same time, BSM and RA also increased in dependence on a year of cultivar release. However, both P N and biomass were positively correlated with root characteristics only at the podding stage. Our data revealed that the improved root characteristic may have contributed to the enhanced photosynthesis, biomass, and yield of soybean cultivars during last 87 years of genetic improvement. We suggest that BSM and RA could be used as important indexes for further practice in soybean production improvement., X. Cui, Y. Dong, P. Gi, H. Wang, K. Xu, Z. Zhang., and Obsahuje seznam literatury
This paper describes the fine structure of oocysts of Nematopsis sp. (Apicomplexa, Porosporidae) found in the abductor muscles of seawater clams, Meretrix meretrix (Linnaeus, 1758) (Veneridae), collected near the city of Dammam (6°17'0''N, 50°12'0''E) in the Arabian Gulf off the coast of Saudi Arabia. Oocysts of an ellipsoidal shape were found among myofibrils of the abductor muscles of infected clams. Each oocyst is composed of an oocyst wall surrounding a single uninucleate vermiform sporozoite located in the lumen of the oocyst wall. The thin oocyst wall (0.70-0.85 µm thick) is composed of homogenous electron-lucent material formed by three layers of equal-thickness. The oocyst wall contains a plano-convex opercular-like structure about 2.5 µm in diameter and 0.75-0.90 µm thick, composed of a homogenous material with moderate electron density. The oocyst is of an ellipsoidal shape and is 15.6 ± 0.6 µm long and 11.1 ± 0.7 µm wide. Externally, the oocyst wall is surrounded by a complex dense network of numerous anastomosed microfibrils, which are attached to the oocyst wall, forming 2-3 layers and extending towards the periphery, at some points penetrating amongst the host cells. The myofibrils in some cases show evident aspects of lysis as a consequence of the appearance of lysosome-like vesicles. Lacking knowledge of a complete life cycle and/or molecular data precluded the conclusive identification of this species.