7-day soil drought followed by 7-day rehydration was applied to potted German chamomile (Chamomilla recutita) plants at the beginning of their generative stage. Plants of a wild type (WT), plus two diploid (2n) and two tetraploid (4n) genotypes were studied, in order to examine the alterations in chlorophyll (Chl) and carotenoids (Car) contents, and chlorophyll fluorescence (CF) parameters during water shortage and rehydration. The fresh mass of the anthodia after the recovery was also studied.
WT plants adjust better to water stress than modern breeding genotypes, because drought resulted in the low fall in leaf water content of WT, the lowest decrease in the fresh mass of its anthodia (a 41% decrease from the control), and the most elastic response of the photosynthetic apparatus. 4n C11/2 strain plants suffered from the highest reduction in anthodia yield (87%), and had the lowest constitutive pigment contents. It was also the only genotype which revealed nontypical alterations in various CF parameters obtained on a dark- and light-adapted leaf. During drought, a big increase was noticed in minimal, maximal, and variable fluorescence of PSII reaction centres in the dark- adapted (F0, Fm and Fv, respectively), and in the light-adapted state (F0', Fm' and Fv')., It was accompanied by the biggest decline in linear electron transport rate (ETR), quantum efficiency of PSII electron transport (ΦPSII) and photochemical quenching coefficient (qP). These alterations were prolonged to the stage when the normal leaf water content was retained. On the contrary, C6/2 strain plants had the highest constitutive Chl and Car contents, which additionally increased after rehydration, similarly to the values of F0, Fm and Fv, which reflects the high photosynthetic potential of this genotype. It was accompanied by the relatively high yield of its anthodia after drought. Considering the drop in the yield triggered by drought, it seems to be the only parameter which may be linked with the ploidy level.
Although the yield formation of chamomile strains cannot simply be estimated by CF assay, this technique may serve as an additional tool in the selection of plants to drought. The following circumstances should be submitted; namely: measurement at the proper developmental stage of plants, in different water regimes, and an analysis of various CF parameters. The increase in F0 and F0', and the reduction in ETR, Fv'/Fm', ΦPSII and qP values in response to water deficit should be an indicator of the impairment of the photosynthetic apparatus through drought., and R. Bączek-Kwinta ... [et al.].
Plasticity models, included in the most popular commercial FEM software, are not able to describe well such cyclic plasticity effects as multiaxial ratcheting or cyclic hardening caused by nonproportional loading. For example in the case of stainless steels it is necessary to use a robust cyclic plasticity model. This paper shows some iinteresting results from FE simulations of stress-strain behaviour of stainless steel 316L using new cyclic plasticity model with superposition of the kinematic hardening rule of AbdelKarim and Ohno [11] and the isotropic hardening rule of Calloch and Marquis [14]. On the basis of performed simulations, a fatigue study has been performed which shows the influence of material option in a FE computation on accuracy of life prediction. The conclusion presents recommendations for the calibration of cyclic plasticity models of Chaboche type. and Obsahuje seznam literatury
This article explores the nexus between the financialisation of housing and socio-economic inequality in Bosnia and Herzegovina (BiH). In this context, since the post-war economic reforms, driven by deindustrialisation, the precarisation of labour, and dependent financialisation, housing loans have become a ‘privilege’ for a restricted group of people with high and stable incomes. Instead, the housing aspirations of Bosnians are generally met with the aid of consumer loans and the ostensibly cheaper FX loans that were introduced in the mid-2000s. Drawing on quantitative and qualitative data, this paper highlights the enduring features of the polarised credit market in BiH. It particularly focuses on the period after the 2008 crisis when lending policies were only mildly re-regulated. FX loans never became the object of an ad hoc law to convert them to Bosnian convertible marks. This institutional approach has been unable to challenge the extreme class segmentation of housing finance and is still fostering indebtedness and precarious housing conditions among the lower-income segments of Bosnian society even after the pandemic.
This paper is a continuation of investigations of n-irmer product spaces given in [5, 6, 7] and an extension of results given in [3] to arbitrary natural n. It concerns families of projections of a given linear space L onto its n-dimensional subspaces and shows that between these families and n-inner products there exist interesting close relations.
Carnosine is a performance-enhancing food supplement with a potential to modulate muscle energy metabolism and toxic metabolites disposal. In this study we explored interrelations between carnosine supplementation (2 g/day, 12 weeks) induced effects on carnosine muscle loading and parallel changes in (i) muscle energy metabolism, (ii) serum albumin glycation and (iii) reactive carbonyl species sequestering in twelve (M/F=10/2) sedentary, overweight-to-obese (BMI: 30.0±2.7 kg/m2 ) adults (40.1±6.2 years). Muscle carnosine concentration (Proton Magnetic Resonance Spectroscopy; 1 H-MRS), dynamics of muscle energy metabolism (Phosphorus Magnetic Resonance Spectroscopy; 31P-MRS), body composition (Magnetic Resonance Imaging; MRI), resting energy expenditure (indirect calorimetry), glucose tolerance (oGTT), habitual physical activity (accelerometers), serum carnosine and carnosinase-1 content/activity (ELISA), albumin glycation, urinary carnosine and carnosine-propanal concentration (mass spectrometry) were measured. Supplementation-induced increase in muscle carnosine was paralleled by improved dynamics of muscle postexercise phosphocreatine recovery, decreased serum albumin glycation and enhanced urinary carnosine-propanal excretion (all p<0.05). Magnitude of supplementation-induced muscle carnosine accumulation was higher in individuals with lower baseline muscle carnosine, who had lower BMI, higher physical activity level, lower resting intramuscular pH, but similar muscle mass and dietary protein preference. Level of supplementationinduced increase in muscle carnosine correlated with reduction of protein glycation, increase in reactive carbonyl species sequestering, and acceleration of muscle post-exercise phosphocreatine recovery.
It was shown that the use of biochar provides many benefits to agriculture by improving the whole complex of soil properties, including soil structure. However, the diverse range of biochar effects depends on its physicochemical properties, its application rates, soil initial properties etc. The impacts of biochar, mainly its reapplication to soils and its interaction with nitrogen in relation to water-stable aggregates (WSA) did not receive much attention to date. The aims of the study were: (1) to evaluate the effect of initial application (in spring 2014) and reapplication (in spring 2018) of different biochar rates (B0, B10 and B20 t ha–1) as well as application of biochar with N-fertilizer (40 to 240 kg N ha–1 depending on the requirement of the cultivated crop) on the content of WSA as one of the most important indicators of soil structure quality, (2) to assess the interrelationships between the contents of soil organic matter (SOM) and WSA. The study was conducted in 2017–2019 as part of the field experiment with biochar on Haplic Luvisol at the experimental station of SUA in Nitra, Slovakia. Results showed that initial application as well as reapplication of biochar improved soil structure. The most favorable changes in soil structure were found in N0B20B treatment (with biochar reapplication) at which a significantly higher content of water-stable macro-aggregates (WSAma) (+15%) as well as content of WSAma size fractions of > 5 mm, 5–3 mm, 3–2 mm and 2–1 mm (+72%, +65%, +57% and +64%, respectively) was observed compared to the control. An increase in SOM content, due to both, initial biochar application and its reapplication, significantly supported the stability of soil aggregates, while organic matter including humic substances composition did not.