For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \{j\geq 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\leq i\leq n-j\}$ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\to \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.