Smoking during pregnancy presents health risks for both the mother and her child. In this study we followed changes in the production of steroid hormones in pregnant smokers. We focused on changes in steroidogenesis in the blood of mothers in their 37th week of pregnancy and in mixed cord blood from their newborns. The study included 88 healthy women with physiological pregnancies (17 active smokers and 71 nonsmokers). We separately analyzed hormonal changes associated with smoking according to the sex of newborns. In women with male fetuses, we found higher levels of serum cortisone, dehydroepiandrosterone (DHEA), 7α-OH-DHEA, 17-OH pregnenolone, testosterone, and androstenedione in smokers at the 37th week compared to non-smokers. In women with female fetuses, we found lower serum levels of 7β-OH-DHEA and higher androstenedione in smokers at the 37th week. We found significantly higher levels of testosterone in newborn males of smokers and higher levels of 7α-OH-DHEA in female newborns of smokers. Smoking during pregnancy induces changes in the production of steroids in both the mother and her child. These changes are different for different fetal sexes, with more pronounced changes in mothers carrying male newborns as well as in the newborn males themselves., K. Adamcová, L. Kolátorová, T. Chlupáčová, M. Šimková, H. Jandíková, A. Pařízek, L. Stárka, M. Dušková., and Obsahuje bibliografii
a1_Chronic smoking alters the circulating levels of sex hormones and possibly also the neuroactive steroids. However, the data available is limited. Therefore, a broad spectrum of free and conjugated steroids and related substances was quantified by GC-MS and RIA in premenopausal smokers and in age-matched (38.9±7.3 years of age) non-smokers in the follicular (FP) and luteal phases (LP) of menstrual cycle (10 non-smokers and 10 smokers, in the FP, and 10 non-smokers and 8 smokers in the LP). Smokers in both phases of the menstrual cycle showed higher levels of conjugated 17-hydroxypregnenolone, 5α-dihydroprogesterone, conjugated isopregnanolone, conjugated 5α-pregnane-3β,20α-diol, conjugated androstenediol, androstenedione, testosterone, free testosterone, conjugated 5α-androstane-3α/β,17β-diols, and higher free testosterone index. In the FP, the smokers exhibited higher levels of conjugated pregnenolone, progesterone, conjugated pregnanolone, lutropin, and a higher lutropin/follitropin ratio, but lower levels of cortisol, allopregnanolone, and pregnanolone. In the LP, the smokers exhibited higher levels of free and conjugated 20α-dihydropregnenolone, free and conjugated dehydroepiandrosterone, free androstenediol, 5α-dihydrotestosterone, free and conjugated androsterone, free and conjugated epiandrosterone, free and conjugated etiocholanolone, 7α/β-hydroxy-dehydroepiandrosterone isomers, and follitropin but lower levels of estradiol and sex hormone binding globulin (SHBG) and lower values of the lutropin/follitropin ratio. In conclusion, chronic cigarette smoking augments serum androgens and their 5α/β-reduced metabolites (including GABAergic substances) but suppresses the levels of estradiol in the LP and SHBG and may induce hyperandrogenism in female smokers., a2_The female smokers had pronouncedly increased serum progestogens but paradoxically suppressed levels of their GABA-ergic metabolites. Further investigation is needed concerning these effects., M. Dušková ... [et al.]., and Obsahuje seznam literatury
a1_Progesterone and estradiol are the foremost steroid hormones in human pregnancy. However, the origin of maternal progesterone has still not been satisfactorily explained, despite the generally accepted opinion that maternal LDL-cholesterol is a single substrate for placental synthesis of maternal progesterone. The question remains why the levels of progesterone are substantially higher in fetal as opposed to maternal blood. Hence, the role of the fetal zone of fetal adrenal (FZFA) in the synthesis of progesterone precursors was addressed. The FZFA may be directly regulated by placental CRH inducing an excessive production of sulfated 3β-hydroxy-5-ene steroids such as sulfates of dehydroepiandrosterone (DHEAS) and pregnenolone (PregS). Due to their excellent solubility in plasma these conjugates are easily transported in excessive amounts to the placenta for further conversion to the sex hormones. While the significance of C19 3β-hydroxy-5-ene steroid sulfates originating in FZFA for placental estrogen formation is mostly recognized, the question “Which maternal and/or fetal functions may be served by excessive production of PregS in the FZFA?“ - still remains open. Our hypothesis is that, besides the necessity to synthesize de novo all the maternal progesterone from cholesterol, it may be more convenient to utilize the fetal PregS. The activities of sulfatase and 3β-hydroxysteroid dehydrogenase (3β-HSD) are substantially higher than the activity of cytochrome P450scc, which is rate-limiting for the placental progesterone synthesis from LDL-cholesterol. However, as in the case of progesterone synthesis from maternal LDL-cholesterol, the relative independence of progesterone levels on FZFA activity may be a consequence of substrate saturation of enzymes converting PregS to progesterone., a2_Some of the literature along with our current data (showing no correlation between fetal and maternal progesterone but significant partial correlations between fetal and maternal 20α-dihydroprogesterone (Prog20α) and between Prog20α and progesterone within the maternal blood) indicate that the localization of individual types of 17β-hydroxysteroid dehydrogenase is responsible for a higher proportion of estrone and progesterone in the fetus, but also a higher proportion of estradiol and Prog20α in maternal blood. Type 2 17β-hydroxysteroid dehydrogenase (17HSD2), which oxidizes estradiol to estrone and Prog20α to progesterone, is highly expressed in placental endothelial cells lining the fetal compartment. Alternatively, syncytium, which is directly in contact with maternal blood, produces high amounts of estradiol and Prog20α due to the effects of type 1, 5 and 7 17β-hydroxysteroid dehydrogenases (17HSD1, 17HSD5, and 17HSD7, respectively). The proposed mechanisms may serve the following functions: 1) providing substances which may influence the placental production of progesterone and synthesis of neuroprotective steroids in the fetus; and 2) creating hormonal milieu enabling control of the onset of labor., M. Hill ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of our study was to evaluate possible effect of ABCB1, and OPRM1 polymorphisms on the efficacy and safety of remifentanil in women undergoing elective cesarean section under general anesthesia. Women received remifentanil (1 μg/kg i.v.) 30 s prior to the induction to standardized general anesthesia. The ABCB1 (rs2032582, rs1045642) and OPRM1 (rs1799971) polymorphisms were analyzed from maternal peripheral blood. The basal hemodynamic and demographic parameters in the study population (n=54) were similar in all the subgroups. The median ± SD increase of systolic blood pressure at 5 min from the baseline was practically completely abolished in homozygous carriers of ABCB1 variants in comparison with wildtype subjects -2.67±25.0 vs. 16.57±15.7 mm Hg, p<0.05 for rs2032582, and 2.00±23.9 vs. 22.13±16.8 mm Hg, p<0.05, for rs1045642, respectively. While no neonate belonging to ABCB1 wild-type homozygous or OPRM1 variant carrying mothers needed any resuscitative measure, 10.5 % of the neonates belonging to OPRM1 wild-type homozygous mothers received resuscitative support similarly as 11.1 %, and 12.5 % of neonates of mothers carrying variants of rs2032582, and rs1045642, respectively. Decreased stabilizing effects of remifentanil on maternal hemodynamics has been observed in ABCB1 wild type mothers, while the adaptation of the neonates was clinically worse in OPRM1 wild type, and ABCB1 variant allele carriers., H. Bakhouche, P. Noskova, S. Svetlik, O. Bartosova, J. Ulrichova, J. Kubatova, P. Marusicova, A. Parizek, J. Blaha, O. Slanar., and Obsahuje bibliografii
The levels of four pregnanolone isomers and their polar conjugates and pregnenolone sulfate were measured in the plasma of 13 and 7 women at delivery with subarachnoidal and epidural analgesia, respectively, and in corresponding samples of umbilical plasma using a simple quadrupole GC/MS system with electron impact ionization (pregnenolone isomers), RIA following HPLC separation (pregnenolone) and specific RIA (pregnanolone sulfate). The concentration of epipregnanolone (3b-hydroxy-5b-pregnan-20-one) in both maternal and umbilical plasma was much lower than that of other pregnanolone isomers. The levels of 3b-hydroxy-pregnanolone isomers were significantly higher in the umbilical plasma than in the maternal, while the differences in 3a-hydroxy-isomers were insignificant. The differences in conjugates were insignificant with the exception of allopregnanolone, the levels of which were lower in umbilical plasma. In all the pregnanolone isomers, a significantly lower conjugated/unconjugated steroid ratio was found in the umbilical plasma than in the maternal plasma. In addition, time profiles of the steroids were measured around parturition and in the postpartum period in the maternal serum. Similarly, the levels of polar conjugates of all pregnanolone isomers were followed during parturition. Changes in concentrations of free steroids exhibited a similar pattern, with a fall primarily within the first hour after delivery. The decrease in conjugated steroids was shifted to the interval within the first hour and first day after delivery, and the changes were more pronounced. The time profiles of the conjugated/free steroid ratio exhibited a significant decrease within the first hour and the first day after delivery in all of the isomers investigated. A decrease was also observed in the ratio of 3a/3b- isomers and 5a/5b- isomers around parturition.The possible physiological consequences of the findings are indicated., J. Klak, M. Hill, A. Pařízek, H. Havlíková, M. Bičíková, R. Hampl T. Fait, J. Šulcová V. Pouzar, R. Kancheva, L. Stárka., and Obsahuje bibliografii
In this review, we focused on the intersection between steroid metabolomics, obstetrics and steroid neurophysiology to give a comprehensive insight into the role of sex hormones and neuroactive steroids (NAS) in the mechanism controlling pregnancy sustaining. The data in the literature including our studies show that there is a complex mechanism providing synthesis of either pregnancy sust aining or parturition provoking steroids. This mechanism includes the boosting placental synthesis of CRH with approaching parturition inducing the excessive synthesis of 3β-hydroxy-5-ene steroid sulfates serving primarily as precursors for placental synthesis of progestogens, estrogens and NAS. The distribution and changing activities of placental oxidoreductases are responsible for the activation or inactivation of the aforementioned steroids, which is compartment-specific (maternal and fetal compartments) and dependent on gestational age, with a tendency to shift the production from the pregnancy-sustaining steroids to the parturition provoking ones with an increasing gestational age. The fetal and maternal livers catabolize part of the bioactive steroids and also convert some precursors to bioactive steroids. Besides the progesterone, a variety of its 5α/β-reduced metabolites may significantly influence the maintenance of human pregnancy, provide protection against excitotoxicity following acute hypoxic stress, and might also affect the pain perception in mother and fetus. and M. Hill ... [et al.].
Postpartum depression affects 10-15 % women after childbirth. There is no currently generally accepted theory about the causes and mechanisms of postpartum mental disorders. The principal hypothesis concerns the association with sudden changes in the production of hormones affecting the nervous system of the mother and, on the other hand, with the ability of receptor systems to adapt to these changes. We observed changes in steroidogenesis in the period ar ound spontaneous delivery. We collected three samples of maternal blood. The first sampling was 4 weeks prior to term; the second sampling was after the onset of uterine contractions (the beginning of spontaneous labour); the third sampling was during the third stage of labour (immediately after childbirth). Additionally, we collected mixed umbilical cord blood. The almost complete steroid metabolome was analyzed by gas chroma tography-mass spectrometry followed by RIA for some steroids. Mental changes in women in the peripartum period were observed using the Hamilton Depression Rating Scale. The local Ethics Committee approved the study. We found already th e changes in androgens levels correlating with postpartum mood disorders four weeks prior to childbirth. The strongest correlations between steroid and postpartum mood change were found in venous blood samples collected from mothers after childbirth and from umbilical cord blood. The main role played testosterone, possibly of maternal origin, and estrogens originating from the fetal compartment. These results suggest that change s in both maternal and fetal steroidogenesis are involved in the development of mental changes in the postpartum period. Descriptions of changes in steroidogenesis in relation to po stpartum depression could help clarify the causes of this disease, and changes in some steroid hormones are a promising marker of mental changes in the postpartum period., A. Pařízek, M. Mikešová, R: Jirák, M. Hill, M. Koucký, A. Pašková, M. Velíková, K. Adamcová, M. Šrámková, H. Jandíková, M. Dušková, L. Stárka., and Obsahuje bibliografii
Steroids are important marker s in pregnancy. Although estimating their levels separately in umbilical arterial (UA) and venous blood (UV) enable more precise insights into the functioning fetoplacental unit compared to using mixed umbilical blood (UM), selective aspiration of UA and UV is technically more demanding than collecting UM. We measured the levels of 67 unconjugated steroids and steroid polar conjugates in UA and UV using GC-MS in 80 women giving birth within weeks 28 to 42 of gestation. The samples were sorted into three groups: women entering labor within weeks 28- 32 (group A, n=19), weeks 33-37 (group B, n=19), and weeks 38-42 (group C, n=42) of gestation, respectively. The preterm labo rs were due to pathologies unrelated to steroid status. Most unconjugated steroids exhibited pronounced arteriovenous differences (AVD). The AVD were less distinct in more stable steroid conjugates. Most steroids positively correlate with gestational age, but unconjugated 5 β -reduced pregnanes show negative correlations, as do testosterone and androstenediol, substrates for the placental synthesis of estrogens. Tight correlations be tween steroids in UA and UV indicate that steroid measurements in UA, UV and UM can be accurately derived from each other, which is important for the diagnostics of steroid related diseases in newborns., A. Pašková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Intrahepatic cholestasis of pregnancy (ICP) is a disorder of liver function, commonly occurring in the third trimester but sometimes also as soon as the end of the second trimester of pregnancy. Symptoms of this disorder include pruritus, plus abnormal values of bile acids and hepatic transaminases. After birth, symptoms disappear and liver function returns to normal. Though ICP is relatively non-complicated and often symptomatically mild from the point-of-view of the mother, it presents a serious risk to the fetus, making this disease the subject of great interest. The etiology and pathogenesis of ICP is multifactorial and as yet not fully elucidated. Hormonal factors likely play a significant role, along with genetic as well as exogenous factors. Here we summarize the knowledge of changes in steroid hormones and their role in the development of intrahepatic cholestasis of pregnancy. In addition, we consider the role of exogenous factors as possible triggers of steroid hormone changes, the relationship between metabolic steroids and bile acids, as well as the combination of these factors in the development of ICP in predisposed pregnant women., A. Pařízek, M. Dušková, L. Vítek, M. Šrámková, M. Hill, K. Adamcová, P. Šimják, A. Černý, Z. Kordová, H. Vráblíková, B. Boudová, M. Koucký, K. Malíčková, L. Stárka., and Obsahuje bibliografii