This paper analyses the bivariate relationship between flood peaks and corresponding flood event volumes modelled by empirical and theoretical copulas in a regional context, with a focus on flood generation processes in general, the regional differentiation of these and the effect of the sample size on reliable discrimination among models. A total of 72 catchments in North-West of Austria are analysed for the period 1976-2007. From the hourly runoff data set, 25 697 flood events were isolated and assigned to one of three flood process types: synoptic floods (including long- and short-rain floods), flash floods or snowmelt floods (both rain-on-snow and snowmelt floods). The first step of the analysis examines whether the empirical peak-volume copulas of different flood process types are regionally statistically distinguishable, separately for each catchment and the role of the sample size on the strength of the statements. The results indicate that the empirical copulas of flash floods tend to be different from those of the synoptic and snowmelt floods. The second step examines how similar are the empirical flood peak-volume copulas between catchments for a given flood type across the region. Empirical copulas of synoptic floods are the least similar between the catchments, however with the decrease of the sample size the difference between the performances of the process types becomes small. The third step examines the goodness-of-fit of different commonly used copula types to the data samples that represent the annual maxima of flood peaks and the respective volumes both regardless of flood generating processes (the traditional engineering approach) and also considering the three process-based classes. Extreme value copulas (Galambos, Gumbel and Hüsler-Reiss) show the best performance both for synoptic and flash floods, while the Frank copula shows the best performance for snowmelt floods. It is concluded that there is merit in treating flood types separately when analysing and estimating flood peak-volume dependence copulas; however, even the enlarged dataset gained by the process-based analysis in this study does not give sufficient information for a reliable model choice for multivariate statistical analysis of flood peaks and volumes.
Flood frequency analysis is usually performed as a univariate analysis of flood peaks using a suitable theoretical probability distribution of the annual maximum flood peaks or peak over threshold values. However, other flood attributes, such as flood volume and duration, are necessary for the design of hydrotechnical projects, too. In this study, the suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested. Streamflow data from selected gauging stations along the whole Danube River have been used. Kendall’s rank correlation coefficient (tau) quantifies the dependence between flood peak discharge and flood volume settings. The methodology is applied to two different data samples: 1) annual maximum flood (AMF) peaks combined with annual maximum flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, respectively (which can be regarded as a regime analysis of the dependence between the extremes of both variables in a given year), and 2) annual maximum flood (AMF) peaks with corresponding flood volumes (which is a typical choice for engineering studies). The bivariate modelling of the extracted peak discharge - flood volume couples is achieved with the use of the Ali-Mikhail-Haq (AMH), Clayton, Frank, Joe, Gumbel, Hüsler-Reiss, Galambos, Tawn, Normal, Plackett and FGM copula families. Scatterplots of the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The results indicate that for the second data sampling method, almost all of the considered Archimedean class copula families perform better than the other copula families selected for this study, and that for the first method, only the upper-tail-flat copulas excel (except for the AMH copula due to its inability to model stronger relationships).
An overview of multivariate modelling based on logistic and exponential smooth transition models with transition variable generated by aggregation operators and orders of auto and exogenous regression selected by information criterion separately for each regime is given. Model specification procedure is demonstrated on trivariate exchange rates time series. The application results show satisfactory improvement in fit when particular aggregation operators are used. Source code in the form of Mathematica package is provided.
The aim of this paper is to open a new way of modelling non-exchangeable random variables with a class of Archimax copulas. We investigate a connection between powers of generators and dependence functions, and propose some construction methods for dependence functions. Application to different hydrological data is given.
Several constructions of additive generators of binary Archimedean copulas are introduced and discussed. Extension to general Archimedean copulas is also included. Applications to the fitting of copulas to real data are given and examplified.