Let $\tau $ be a type of algebras. A valuation of terms of type $\tau $ is a function $v$ assigning to each term $t$ of type $\tau $ a value $v(t) \geq 0$. For $k \geq 1$, an identity $s \approx t$ of type $\tau $ is said to be $k$-normal (with respect to valuation $v$) if either $s = t$ or both $s$ and $t$ have value $\geq k$. Taking $k = 1$ with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called $k$-normal (with respect to the valuation $v$) if all its identities are $k$-normal. For any variety $V$, there is a least $k$-normal variety $N_k(V)$ containing $V$, namely the variety determined by the set of all $k$-normal identities of $V$. The concept of $k$-normalization was introduced by K. Denecke and S. L. Wismath in their paper (Algebra Univers., 50, 2003, pp.107-128) and an algebraic characterization of the elements of $N_k(V)$ in terms of the algebras in $V$ was given in (Algebra Univers., 51, 2004, pp. 395--409). In this paper we study the algebras of the variety $N_2(V)$ where $V$ is the type $(2,2)$ variety $L$ of lattices and our valuation is the usual depth valuation of terms. We introduce a construction called the {\it $3$-level inflation} of a lattice, and use the order-theoretic properties of lattices to show that the variety $N_2(L)$ is precisely the class of all $3$-level inflations of lattices. We also produce a finite equational basis for the variety $N_2(L)$.
A basic algebra is an algebra of the same type as an MV-algebra and it is in a one-to-one correspondence to a bounded lattice having antitone involutions on its principal filters. We present a simple criterion for checking whether a basic algebra is commutative or even an MV-algebra.
A variety is called normal if no laws of the form $s=t$ are valid in it where $s$ is a variable and $t$ is not a variable. Let $L$ denote the lattice of all varieties of monounary algebras $(A,f)$ and let $V$ be a non-trivial non-normal element of $L$. Then $V$ is of the form ${\mathrm Mod}(f^n(x)=x)$ with some $n>0$. It is shown that the smallest normal variety containing $V$ is contained in ${\mathrm HSC}({\mathrm Mod}(f^{mn}(x)=x))$ for every $m>1$ where ${\mathrm C}$ denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of $L$ consisting of all normal elements of $L$ is isomorphic to $L$.
Some geometrical methods, the so called Triangular Schemes and Principles, are introduced and investigated for weak congruences of algebras. They are analogues of the corresponding notions for congruences. Particular versions of Triangular Schemes are equivalent to weak congruence modularity and to weak congruence distributivity. For algebras in congruence permutable varieties, stronger properties—Triangular Principles—are equivalent to weak congruence modularity and distributivity.
In Chajda's paper (2014), to an arbitrary BCI-algebra the author assigned an ordered structure with one binary operation which possesses certain antitone mappings. In the present paper, we show that a similar construction can be done also for pseudo-BCI-algebras, but the resulting structure should have two binary operations and a set of couples of antitone mappings which are in a certain sense mutually inverse. The motivation for this approach is the well-known fact that every commutative BCK-algebra is in fact a join-semilattice and we try to obtain a similar result also for the non-commutative case and for pseudo-BCI-algebras which generalize BCK-algebras, see e.g. Imai and Iséki (1966) and Iséki (1966).
The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$.
The concept of the (dual) binary discriminator was introduced by R. Halas, I. G. Rosenberg and the author in 1999. We study finite algebras having the (dual) discriminator as a term function. In particular, a simple characterization is obtained for such algebras with a majority term function.
It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.