Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltagedependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltagedependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype., E. Misárková, M. Behuliak, M. Bencze, J. Zicha., and Obsahuje bibliografii
A total genome scan and pharmacogenetic study were designed to search for genetic determinants of blood pressure (BP) as well as heart and kidney weights. Genome scanning was carried out in 266 F2 intercrosses from Prague hypertensive hypertriglyceridemic rats for phenotypes of organ weights, baseline BP, BP after blockade of the renin-angiotensin system (RAS) by losartan, of the sympathetic nervous system (SNS) by pentolinium, and of the nitric oxide (NO) synthase by NG-nitro-L-arginine methyl ester. Pharmacogenetic analysis showed that, in males, BP was controlled by two loci on chromosomes 1 and 5 (Chr1, Chr5) through the SNS, and these loci showed a positive contribution for relative kidney weight (KW/BW). On the other hand, baseline BP in females was controlled by two loci on Chr3 and Chr7. The effect of these loci was not mediated by the RAS, SNS or NO system. These loci did not show any effect for KW/BW. Negatively-linked loci for KW/BW and relative heart weight (HW/BW) were identified on Chr2 in both genders. Another negatively-linked locus for KW/BW, located on Chr8 in males, affected BP through the SNS. This locus on Chr8 overlapped with a previously-reported modifier locus for polycystic kidney disease (PKD). In conclusion, this pharmacogenetic study determined two loci for BP and relative organ mass implicating sympathetic overactivity. Concordance of the identified locus for KW/BW and BP through the SNS on Chr8 with the PKD locus revealed the importance of this region for renal complications in various diseases., T. Ueno, J. Tremblay, J. Kuneš, J. Zicha, Z. Dobešová, Z. Pausová, A. Y. Deng, Y. Sun, H. J. Jacob, P. Hamet., and Obsahuje bibliografii
Impressive advances in molecular genetic techniques allow to analyze the effects of natural selection on the development of human genome. For example, the trend towards blonde hair and blue eyes was documented. The approach to analyze possible effects of natural selection on the evolution of recent phenotypes with high risk of cardiovascular disease has not been described yet. A possible effect on the evolution of two main risk factors - hypercholesterolemia and hypertension - is presented. The close relationship of non-HDL cholesterol blood concentration to the proportion of pro-inflammatory macrophages in human visceral adipose tissue might be a result of long-lasting natural selection. Individuals with higher proportion of this phenotype might also display a higher ability to fight infection, which was very common in human setting from prehistory until Middle Ages. Successful battle against infections increased the probability to survive till reproductive age. Similar hypothesis was proposed to explain frequent hypertension in African Americans. A long-lasting selection for higher ability to conserve sodium during long-term adaptation to low sodium intake and hot weather was followed by a short-term (but very hard) natural selection of individuals during transatlantic slave transport. Only those with very high capability to retain sodium were able to survive. Natural selection of phenotypes with high plasma cholesterol concentration and/or high blood pressure is recently potentiated by high-fat high-sodium diet and overnutrition. This hypothesis is also supported by the advantage of familial hypercholesterolemia in the 19th century (at the time of high infection disease mortality) in contrast to the disadvantage of familial hypercholesterolemia during the actual period of high cardiovascular disease mortality., R. Poledne, J. Zicha., and Seznam literatury
Blood pressure (BP) level results from the balance of vasoconstrictors (mainly sympathetic nervous system) and vasodilators (predominantly nitric oxide and endothelium-derived hyperpolarizing factor). Most of the forms of experimental hypertension are associated with sympathetic hyperactivity and endothelial dysfunction. It is evident that nitric oxide and norepinephrine are antagonists in the control of calcium influx through L-type voltage-dependent calcium channels (L-VDCC). Their effects on L-VDCC are mediated by cGMP and cAMP, respectively. Nevertheless, it remains to determine whether these cyclic nucleotides have direct effects on L-VDCC or they act through a modulation of calcium-activated K+ and Cl- channels which influence membrane potential. Rats with genetic or salt hypertension are characterized by a relative (but not absolute) NO deficiency compared to the absolute enhancement of sympathetic vasoconstriction. This dysbalance of vasoconstrictor and vasodilator systems in hypertensive animals is reflected by greater calcium influx through L-VDCC susceptible to the inhibition by nifedipine. However, when the modulatory influence of cyclic nucleotides is largely attenuated by simultaneous ganglionic blockade and NO synthase inhibition, BP of spontaneously hypertensive rats remains still elevated compared to normotensive rats due to augmented nifedipine-sensitive BP component. It remains to determine why calcium influx through L-VDCC of hypertensive rats is augmented even in the absence of modulatory influence of major vasoactive systems (sympathetic nervous system, nitric oxide)., M. Pintérová ... [et al.]., and Obsahuje seznam literatury
Treatment with pertussis toxin (PTX) which eliminates the activity of Gi proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 μg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension., A. Zemančíková, J. Török, J. Zicha, J. Kuneš., and Obsahuje bibliografii a bibliografické odkazy
High blood pressure (BP) of L-NAME hypertensive rats is maintained not only by the absence of nitric oxide (NO)-dependent vasodilatation but also by the enhancement of both sympathetic and angiotensin II-dependent vasoconstriction. The aim of the present study was to evaluate the role of inhibitory G (Gi) proteins, which are involv ed in tonic sympathetic vasoconstriction, in the pathogenesis of NO-deficient hypertension. We therefore studied BP response to chronic L-NAME administration (60 mg/kg/day for 4 weeks) in rats in which the in vivo inactivation of Gi proteins was induced by injection of pertussis toxin (PTX, 10 μg/kg i.v.). The impairment of sympathetic vasoconstriction due to PTX-induced Gi protein inactivation prevents the full development of NO-deficient hypertension because BP of PTX-treated rats subjected to chronic L-NAME administration did not reach hypertensive values. Nevertheless, chronic NO synthase inhibition per se is capable to increase moderately BP even in PTX-treated rats. Our data suggest that the sympathetic vasoconstriction is essential for the development of established NO-deficient hypertension., J. Zicha ... [et al.]., and Obsahuje seznam literatury
Spontaneously hypertensive rats (SHR) are characterized by enhanced sympathetic vasoconstriction, whereas their vasodilator mechanisms are relatively attenuated compared to their high BP. The objective of our in vivo study was to evaluate whether the impaired function of BKCa and/or KV channels is responsible for abnormal cAMP-induced vasodilatation in genetic hypertension. Using conscious SHR and normotensive WKY rats we have shown that under the basal conditions cAMP overproduction elicited by the infusion of β-adrenoceptor agonist (isoprenaline) caused a more pronounced decrease of baseline blood pressure (BP) in SHR compared to WKY rats. Isoprenaline infusion prevented BP rises induced by acute NO synthase blockade in both strains and it also completely abolished the fully developed BP response to NO synthase blockade. These cAMP-induced vasodilator effects were diminished by the inhibition of either BKCa or KV channels in SHR but simultaneous blockade of both K+ channel types was necessary in WKY rats. Under basal conditions, the vasodilator action of both K+ channels was enhanced in SHR compared to WKY rats. However, the overall contribution of K+ channels to cAMP-induced vasodilator mechanisms is insufficient in genetic hypertension since a concurrent activation of both K+ channels by cAMP overproduction is necessary for the prevention of BP rise elicited by acute NO/cGMP deficiency in SHR. This might be caused by less effective activation of these K+ channels by cAMP in SHR. In conclusion, K+ channels seem to have higher activity in SHR, but their vasodilator action cannot match sufficiently the augmented vasoconstriction in this hypertensive strain., M. Pintérová, M. Behuliak, J. Kuneš, J. Zicha., and Obsahuje bibliografii