LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
Changes to the previous version and helpful comments
• File names of the comprehension test results (self-explanatory)
• Corrected one erroneous automatic evaluation rule in the multiple-choice evaluation (zahradnici_3,
TRUE and FALSE had been swapped)
• Evaluation protocols for both question types added into Folder lifr_formr_study_design
• Data has been cleaned: empty responses to multiple-choice questions were re-inserted. Now, all surveys
are considered complete that have reader’s subjective text evaluation complete (these were placed at
the very end of each survey).
• Only complete surveys (all 7 content questions answered) are represented. We dropped the replies of
six users who did not complete their surveys.
• A few missing responses to open questions have been detected and re-inserted.
• The demographic data contain all respondents who filled in the informed consent and the demographic
details, with respondents who did not complete any test survey (but provided their demographic
details) in a separate file. All other data have been cleaned to contain only responses by the regular
respondents (at least one completed survey).
Corpus of Czech educational texts for readability studies, with paraphrases, measured reading comprehension, and a multi-annotator subjective rating of selected text features based on the Hamburg Comprehensibility Concept
Corpus of Czech educational texts for readability studies, with paraphrases, measured reading comprehension, and a multi-annotator subjective rating of selected text features based on the Hamburg Comprehensibility Concept
NomVallex 2.0 is a manually annotated valency lexicon of Czech nouns and adjectives, created in the theoretical framework of the Functional Generative Description and based on corpus data (the SYN series of corpora from the Czech National Corpus and the Araneum Bohemicum Maximum corpus). In total, NomVallex is comprised of 1027 lexical units contained in 570 lexemes, covering the following parts-of-speech and derivational categories: deverbal or deadjectival nouns, and deverbal, denominal, deadjectival or primary adjectives. Valency properties of a lexical unit are captured in a valency frame (modeled as a sequence of valency slots, each supplemented with a list of morphemic forms) and documented by corpus examples. In order to make it possible to study the relationship between valency behavior of base words and their derivatives, lexical units of nouns and adjectives in NomVallex are linked to their respective base lexical units (contained either in NomVallex itself or, in case of verbs, in the VALLEX lexicon), linking up to three parts-of-speech (i.e., noun – verb, adjective – verb, noun – adjective, and noun – adjective – verb).
In order to facilitate comparison, this submission also contains abbreviated entries of the base verbs of these nouns and adjectives from the VALLEX lexicon and simplified entries of the covered nouns and adjectives from the PDT-Vallex lexicon.
The NomVallex I. lexicon describes valency of Czech deverbal nouns belonging to three semantic classes, i.e. Communication (dotaz 'question'), Mental Action (plán 'plan') and Psych State (nenávist 'hatred'). It covers both stem-nominals and root-nominals (dotazování se 'asking' and dotaz 'question'). In total, the lexicon includes 505 lexical units in 248 lexemes. Valency properties are captured in the form of valency frames, specifying valency slots and their morphemic forms, and are exemplified by corpus examples.
In order to facilitate comparison, this submission also contains abbreviated entries of the source verbs of these nouns from the Vallex lexicon and simplified entries of the covered nouns from the PDT-Vallex lexicon.
The valency lexicon PDT-Vallex 4.0 has been built in close connection with the annotation of the Prague Dependency Treebank project (PDT) and its successors (mainly the Prague Czech-English Dependency Treebank project, PCEDT, the spoken language corpus (PDTSC) and corpus of user-generated texts in the project Faust). It contains over 14500 valency frames for almost 8500 verbs which occurred in the PDT, PCEDT, PDTSC and Faust corpora. In addition, there are nouns, adjectives and adverbs, linked from the PDT part only, increasing the total to over 17000 valency frames for 13000 words. All the corpora have been published in 2020 as the PDT-C 1.0 corpus with the PDT-Vallex 4.0 dictionary included; this is a copy of the dictionary published as a separate item for those not interested in the corpora themselves. It is available in electronically processable format (XML), and also in more human readable form including corpus examples (see the WEBSITE link below, and the links to its main publications elsewhere in this metadata). The main feature of the lexicon is its linking to the annotated corpora - each occurrence of each verb is linked to the appropriate valency frame with additional (generalized) information about its usage and surface morphosyntactic form alternatives. It replaces the previously published unversioned edition of PDT-Vallex from 2014.
PDT 3.0 is a new version of Prague Dependency Treebank. It contains a large amount of Czech texts with complex and interlinked morphological (2 million words), syntactic (1.5 MW) and semantic annotation (0.8 MW); in addition, certain properties of sentence information structure, multiword expressions, coreference, bridging relations and discourse relations are annotated at the semantic level. and the Grant Agency of the Czech Republic: grants P406/12/0658 "Coreference, discourse relations and information structure in a contrastive perspective", P406/2010/0875 "Computational Linguistics: Explicit description of language and annotated data focused on Czech", 405/09/0729 "From the structure of a sentence to textual relationships", and GPP406/12/P175 (Selected derivational relations for automatic processing of Czech);
the Ministry of Education, Youth and Sports of the Czech Republic: the KONTAKT project ME10018 "Towards a computational analysis of text structure" and the LINDAT-Clarin project LM2010013;
the Grant Agency of Charles University in Prague: GAUK 103609 "Textual (Inter-sentential) Relations and their Representation in a Language Corpus" and GAUK 4383/2009 "Methods of coreference resolution".
The Prague Dependency Treebank 3.5 is the 2018 edition of the core Prague Dependency Treebank (PDT). It contains all PDT annotation made at the Institute of Formal and Applied Linguistics under various projects between 1996 and 2018 on the original texts, i.e., all annotation from PDT 1.0, PDT 2.0, PDT 2.5, PDT 3.0, PDiT 1.0 and PDiT 2.0, plus corrections, new structure of basic documentation and new list of authors covering all previous editions. The Prague Dependency Treebank 3.5 (PDT 3.5) contains the same texts as the previous versions since 2.0; there are 49,431 annotated sentences (832,823 words) on all layers, from tectogrammatical annotation to syntax to morphology. There are additional annotated sentences for syntax and morphology; the totals for the lower layers of annotation are: 87,913 sentences with 1,502,976 words at the analytical layer (surface dependency syntax) and 115,844 sentences with 1,956,693 words at the morphological layer of annotation (these totals include the annotation with the higher layers annotated as well). Closely linked to the tectogrammatical layer is the annotation of sentence information structure, multiword expressions, coreference, bridging relations and discourse relations.
Czech nouns of communication can mostly be modified by three participants, Speaker, Information and Addressee. These participants can be expressed by various forms but only some of them can be combined with each other. We search for frequencies of selected combinations of participants modifying several types of nouns of communication in subcorpora of the Czech National Corpus. We compare them with frequencies of similar combinations of participants modifying a sample of nouns of exchange and provide a quantitative analysis of them. The two semantic classes considerably differ in frequencies of combinations including Agent (Speaker of nouns of communication, Posesor 1 of nouns of exchange). While Agent is deleted in almost all occurrences of nouns of exchange, it is comparably frequent as Information in occurrences of some types of nouns of communication. We confirm our hypothesis that Agent plays an important role in valency behaviour of nouns of communication.