Four-d-old seedlings were exposed to ultraviolet-B, UV-B (20 pinol ht^), and UV-B supplemented with red, R {X 612 nin, 5 pmol nr^) or far-red, FR (X 712 nin, 4.5 pmol nr^) radiation for 30 min during the middle of tlie light phase. Three d of UV-B treatment caused reduction in shoot elongation and expansion of cotyledonaiy leaves. The reduction was largely reversed by supplementary R and FR radiations. Supplementation of FR accelerated senescence process. Similar changes were also noted in the contents of photosynthetic piginents, while the level of anthocyanin was enhanced by all treatments. Flavonoid accumulation was enhanced by UV-B, whereas R and FR radiations suppressed its synthesis to various degrees. The chlorophyll (Chl) fluorescence ratio Fy/F,„ and half-rise time of maximum fluorescence were greatly reduced by UV-B and with FR supplementation. R reversed this UV-B inhibition to a great extent. Likewise, tlie P-S dechne was higher under control and +UV-B+R than under +UV-B and +UV-B+FR treatments, At the protein level both the subunits of ribulose 1,5-bisphosphate carboxylase alone were regulated by phytochrome. All these experiments indicated a possible role of phytochrome in regulating the UV-B induced changes in plant morphology and chloroplast proteins.