We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 µmol m-2 s-1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm' ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66. and K. H. Lin, W. C. Hwang, H. F. Lo.
The objective of this study was to use nondestructive measurements as the precise irrigation indices for potted star cluster (Pentas lanceolata). Drought stress was imposed on plants for 0, 3, 5, 7, 12, and 16 d by withholding water. Measurements were conducted on the third leaf counted from the apex (upper leaves) and on the third leaf from the bottom (lower leaves). Within the range of soil water content (SWC) from 10 to 45%, leaf water potential (WP), SWC, and soil matric potential (SMP), chlorophyll fluorescence, photochemical reflectance index (PRI), adjusted normalized difference vegetation index (aNDVI), and the reflectance (R) at 1950 nm (R1950) were measured. The plants reached the temporary wilting point at -3.87 MPa of leaf WP; the maximal fluorescence yield of the light-adapted state (Fm′) ratio of upper-to-lower leaves was 1.7. When the Fm′ ratio was 1.3, it corresponded to lower-leaf WP < -2.27 MPa, SWC < 21%, SMP < -20 kPa, PRI < 0.0443, aNDVI < 0.0301, and R1950 > 8.904; it was the time to irrigate. In conclusion, the Fm′ ratio of upper-to-lower leaves was shown to be a nondestructive predictor of leaf WP and can be used to estimate irrigation timing., C. W. Wu, M. C. Lee, Y. L. Peng, T. Y. Chou, K. H. Lin, Y. S. Chang., and Obsahuje seznam literatury