Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280-320 nm; 60 µmol m-2 s-1) exposure alone and in combination with photosynthetically active radiation (PAR; 400-800 nm; 200 µmol m-2 s-1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples. and M. K. Pradhan ... [et al.].
The photosynthetic responses to elevated CO2 concentration (EC) at ambient and ambient +4°C temperature were aßsessed in the second leaf of rice (Oryza sativa L.) seedlings. The duration of different leaf developmental phases, as characterised by changes in photosynthetic pigment contents and photochemical potential, was protracted in the seedlings grown under EC. On the other hand, a temporal shift in the phases of development with an early onset of senescence was observed in the seedlings grown under EC at ambient +4°C temperature. The contents of carotenoids, ß-carotene, and xanthophyll cycle pigments revealed that EC downregulated the protective mechanism of photosynthetic apparatus against oxidative damages, whereas this mechanism assumed higher significance under EC at ambient +4°C temperature. We observed an enhancement in electron transport activity, photochemical potential, and net photosynthesis in spite of a loss in photostasis of photosynthesis under EC. On the other hand, the loss in photostasis of photosynthesis was exacerbated under EC at ambient +4°C temperature due to the decline in electron transport activity, photochemical potential, and net photosynthesis., S. Panigrahi, M. K. Pradhan, D. K. Panda, S. K. Panda, P. N. Joshi., and Seznam literatury
In clusterbean leaves UV-B radiation caused a reduction in contents of chlorophylls and carotenoids and in the efficiency of photosystem 2 photochemistry. The degree of damage was reduced when UV-A accompanied the UV-B radiation. This indicates the counteracting effect of UV-A radiation against UV-B-induced impairment. and S. Gartia ... [et al.].