The effect of ectomycorrhizal Pisolithus tinctorius (Pt) infection was studied on the growth and photosynthetic characteristics of Pinus densiflora seedlings grown at ambient (360 µmol mol-1, AC) and elevated (720 µmol mol-1, EC) CO2 concentrations. After 18 weeks, Pt inoculation had led to significantly increased dry mass and stem diameter of P. densiflora at both CO2 concentrations, relative to non-inoculated seedlings. Moreover, EC significantly increased the ectomycorrhizal development. The phosphate content in needles inoculated with Pt was about three times higher than without inoculation at both CO2 concentrations. The PAR saturated net photosynthetic rates (Psat) of P. densiflora inoculated with Pt were clearly higher than for control seedlings at both CO2 concentrations, and the maximum net photosynthetic rate (PN) at saturated CO2 concentration (Pmax) was higher than in controls. Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the PN/Ci curve for P. densiflora inoculated with Pt were significantly higher than for non-inoculated seedlings at both CO2 concentrations, especially at EC. The water use efficiency (WUE) of seedlings inoculated with Pt grown at EC was significantly raised. Allocation of photosynthates to roots was greater in Pt inoculated pine seedlings, because of the enhanced activity of ectomycorrhiza associated with seedlings at EC. Moreover, PN of non-inoculated seedlings grown for 18 weeks at EC tended to be down regulated; in contrast, Pt inoculated seedlings showed no down-regulation at EC. The activity of ectomycorrhiza may therefore be enhanced physiological function related to water and phosphate absorption in P. densiflora seedlings at EC. and D. S. Choi ... [et al.].