Plant response to the combination of two or more abiotic stresses is different than its response to the same stresses singly. The response of maize (Zea mays L.) photosynthesis, growth, and development processes were examined under sunlit plant growth chambers at three levels of each day/night temperatures (24/16°C, 30/22°C, and 36/28°C) and UV-B radiation levels (0, 5, and 10 kJ m-2 d-1) and their interaction from 4 d after emergence to 43 d. An increase in plant height, leaf area, node number, and dry mass was observed as temperature increased. However, UV-B radiation negatively affected these processes by reducing the rates of stem elongation, leaf area expansion, and biomass accumulation. UV-B radiation affected leaf photosynthesis mostly at early stage of growth and tended to be temperature-dependent. For instance, UV-B radiation caused 3-15% decrease of photosynthetic rate (PN) on the uppermost, fully expanded leaves at 24/16°C and 36/28°C, but stimulated P N about 5-18% at 30/22°C temperature. Moreover, the observed UV-B protection mechanisms, such as accumulation of phenolics and waxes, exhibited a significant interaction among the treatments where these compounds were relatively less responsive (phenolics) or more responsive (waxes) to UV-B radiation at higher temperature treatments or vice versa. Plants exposed to UV-B radiation produced more leaf waxes except at 24/16°C treatment. The detrimental effect of UV-B radiation was greater on plant growth compared to the photosynthetic processes. Results suggest that maize growth and development, especially stem elongation, is highly sensitive to current and projected UV-B radiation levels, and temperature plays an important role in the magnitude and direction of the UV-B mediated responses., S. K. Singh, K. R. Reddy, V. R. Reddy, W. Gao., and Obsahuje bibliografii
A portable open gas-exchange system (Li-6400, Li-Cor, Inc., Lincoln, NE, USA) has been widely used for the measurement of net gas exchanges and calibration/parameterization of leaf models. Measurement errors due to diffusive leakage rates of water vapor (LW) and CO2 (LC) between inside and outside of the leaf chamber, and the inward dark transpiration rate (DW) and dark respiration rate (DC) released from the leaf under the gasket, can be significant. Rigorous model-based approaches were developed for estimating leakage coefficients of water vapor (KW) and CO2 (KC) and correcting for the combination of these errors. Models were based on mass balance equations and the Dusty Gas Model for a ternary gas mixture of water vapor, CO2, and dry air. Experiments were conducted using two Li-6400 systems with potato and soybean leaves. Results indicated that models were reliable for estimating KW and KC, and the values varied with instrument, chamber size, gasket condition, and leaf structure. A thermally killed leaf should be used for this determination. Measurement error effects on parameterization of the Farquhar et al. (1980) model as determined by PN/C i curves were substantial and each parameter had its own sensitivity to measurement errors. Results also indicated that all four error sources should be accounted for when correcting measurements., Q. Wang ... [et al.]., and Obsahuje bibliografii a dodatky
To assess the relationship between chlorophyll (Chl) fluorescence (CF) and photosynthetic pigments, soybean was grown under varying phosphorus (P) nutrition at ambient and elevated CO2 (EC). The EC stimulated, but P deficiency decreased plant height, node numbers, and leaf area concomitantly with the rates of stem elongation, node addition, and leaf area expansion. Under P deficiency, CF parameters and pigments declined except that carotenoids (Car) were relatively stable indicating its role in photoprotection. The CF parameters were strongly related with Chl concentration but not with Chl a/b or Car. However, total Chl/Car showed the strongest association with CF parameters such as quantum efficiency and yield of photosystem II. This relationship was not affected by CO2 treatment. The high correlation between CF and total Chl/Car underscores the significance of the quantification of both, Chl and Car concentrations, to understand the photochemistry and underlying processes of photoprotection and mechanisms of excess energy dissipation in a given environment., S. K. Singh, V. R. Reddy, D. H. Fleisher, D. J. Timlin., and Obsahuje bibliografii