The basics of the laser driven inertial fusion are explained. The meaning of scaling laws governing both the direct and indirect drive is illustrated in the context of the world largest laser projects NIF (USA) and LMJ (France) aiming at igniting thermonuclear targets. Demands on power station grade laser drivers are given in the light of arrival of YAG nanoceramics as a future laser material for high power, high repetition rate pulsed laser system. Tentative predictions are made for the future of major EU laser projects HiPER and ELI., Karel Rohlena., and Obsahuje bibliografii
An essential part of the ESFRI roadmap to foster the European science in the field of large laser systems, the project ELI-Beamlines is to be built in the Czech Republic. The project has been submitted by the Institute of Physics to the European Commision and it is expected to be financed from the structural funds just due. The facility, which consists of several laser beamlines delivering a very high power density (up to 1023 W/cm2) on the target in a repetitive regime, should be ready by 2015. A smaller sister-project HiLASE should support the ELI-Beamlines by providing high average power repetitive ns lasers as an intermediate pumping element of the ELI laser chains, but, at the same time, of interest for various laser assisted technologies. and Karel Rohlena.
Experimental control of quantum systems has been pursued widely since the invention of quantum mechanics. In the first part of the 20th century, atomic physics helped provide a test bed for quantum mechanics through studies of atoms‘ internal energy differences and their interaction with radiation. The advent of spectrally pure, tunable radiation sources such as microwave oscillators and lasers dramatically improved these studies by enabling the coherent control of atoms‘ internal states to deterministically prepare superposition states, as, for example, in the Ramsey method. More recently this control has been extended to the external (motional) states of atoms. Laser cooling and other refrigeration techniques have provide the initial states for a number of interesting studies, such as Bose-Einstein condensation. Similarly, control of the quantum states of artificial atoms in the context of condensed-matter systems is achieved in many laboratories throughout the world. To give proper recognition to all of these works would be a daunting task; therefore, I will restrict these notes to experiments on quantum control of internal and external states of trapped atomic ions., David J. Wineland ; přeložil Karel Rohlena., and Obsahuje bibliografii