The Capsalidae are monogeneans parasitizing ''skin'', fins and gills of marine fishes. Some capsalids are pathogenic to cultivated fish and a few have caused epizootic events. It is a cosmopolitan family with broad host associations (elasmobranchs and teleosts, including sturgeons). Approximately 200 capsalid species are placed in nine subfamilies and 44-46 genera, some of which are well known (Benedenia, Capsala, Entobdella, Neobenedenia). Sturgeons host two capsalid species (Nitzschiinae) and 15 species in five genera are reliably reported from elasmobranchs. The combination of ancient (shark, ray, sturgeon) and modern (teleost) host fish lineages indicates that capsalid evolution is likely a blend of coevolution and host-switching, but a family phylogeny has been lacking due to deficient knowledge about homologies. The current phenetic subfamilial classification is discussed in detail using a preliminary phylogeny generated from large subunit ribosomal DNA sequence data from representatives of five subfamilies. Monophyly of the Capsalidae is supported by possession of accessory sclerites. Hypotheses are proposed for the possible radiation of capsalids. A suggestion that Neobenedenia melleni, a pathogenic species atypical due to its broad host-specificity (>100 host teleost species from >30 families in five orders), may be a complex of species is supported from genetic evidence. This may explain peculiarities in biology, taxonomy, host associations and geographic distribution of N. 'melleni' and has implications for fish health. Holistic studies using live and preserved larval and adult capsalid specimens and material for genetic analysis are emphasised to further determine identity, phylogeny and details of biology, especially for pathogenic species.
The elongated encased spermatophores of the capsalid (entobdelline) monogeneans Neoentobdella diadema (Monticelli, 1902) Kearn et Whittington, 2005 and N. apiocolpos (Euzet et Maillard, 1967) Kearn et Whittington, 2005 have been found attached by their proximal ends to the region of the vaginal opening, with the bulk of the spermatophore projecting from the vagina and therefore lying outside the body. In spite of previous reports, no spermatophores were found projecting from the common genital opening and if spermatophore exchange is as rapid as it is in the related entobdelline Entobdella soleae, then the chances of finding a spermatophore in this location are small. In N. diadema and N. apiocolpos it is likely that sperm enters the vagina through the open proximal end of an attached spermatophore, after which the empty spermatophore case is probably discarded. There is no evidence for a previous proposal that the whole spermatophore is engulfed by the vagina followed by digestion of the case to release the sperm. Three specimens of N. diadema were found each with two spermatophore cases projecting from the vagina and a specimen of N. apiocolpos carried three cases. Assuming that each parasite is able to donate or receive only one spermatophore at each mating, then the presence of one spermatophore does not prevent a further mating and acceptance of a fresh spermatophore. In spite of differences between the spermatophores of E. soleae and N. diadema/N. apiocolpos, the events of spermatophore exchange may be similar.
Myliocotyle borneoensis sp. n. and M. multicrista sp. n. (Monocotylidae: Heterocotylinae) are described from the gills of the mottled eagle ray, Aetomylaeus maculatus (Gray), and the banded eagle ray A. nichofii (Bloch et Schneider) (Myliobatidae), respectively, collected from the northern coast of Malaysian Borneo. These are the first monogeneans to be described on elasmobranchs from Borneo. The formerly monotypic Myliocotyle (for M. pteromylaei) was distinguished from other monocotylids by the distribution and morphology of the eight sclerotised dorsal haptoral accessory structures and the morphology of the male copulatory organ. However, we have determined that M. pteromylaei has ten structures on the dorsal surface of the haptor. Myliocotyle borneoensis is distinguished from M. pteromylaei by the morphology of the male copulatory organ and its accessory piece. Myliocotyle multicrista has 12 sclerotised dorsal haptoral accessory structures and a male copulatory organ with two accessory pieces. Additional sclerotised ridges across the ventral surfaces of each loculus (except the posterior-most pair) are also present in M. multicrista. The diagnosis for Myliocotyle is revised given our discovery of additional dorsal haptoral accessory structures in the type species and to accommodate other new characters of the two new species. Anterior secretions of Myliocotyle are discussed.
Two new species of entobdelline (capsalid) monogeneans are described from the skin of Australian dasyatid stingrays, namely Neoentobdella cribbi sp. n., a small parasite from the estuarine stingray, Dasyatis fluviorum Ogilby (Elasmobranchii: Dasyatidae) and Neoentobdella baggioi sp. n., a relatively large parasite from the porcupine ray, Urogymnus asperrimus (Bloch et Schneider) (Elasmobranchii: Dasyatidae). A striking feature of both of these new parasite species is a pad, possibly located within the genital atrium, armed with rows of closely spaced, rod-shaped microsclerites. Both species also possess a muscular papilla in the genital tract and a club-shaped structure near the common genital opening on the left lateral margin of the body. In N. cribbi, the latter feature is large and located anterior to the genital pad and in N. baggioi, it is small and located in a more posterior position. Similar embellishments in the genital area occur in N. natans Kearn et Whittington, 2005 and in N. parvitesticulata Kearn et Whittington, 2005, while other species (e.g. N. garneri Whittington et Kearn, 2009 and N. taiwanensis Whittington et Kearn, 2009) lack these features and differ also in functional aspects of the male copulatory apparatus and the haptor. Separate generic status for these two groupings is indicated, but must await a comparative and comprehensive review of all Neoentobdella spp.
While the majority of polyopisthocotylean monogeneans feed on blood, some polystomatids infecting chelonians do not. This study examined the gastrodermis of two polystomatids, one - Neopolystoma spratti Pichelin, 1995 - from the conjunctival sac of a chelonian and the other - Concinnocotyla australensis (Reichenbach-Klinke, 1966) - from the oral cavity, gill arches and primary gill lamellae of a fish, and also found no evidence of blood feeding. However, the gastrodermal architecture in both species basically resembles that found in blood feeding polyopisthocotyleans, with alternation of lamellated digestive cells and an intervening syncytium. In C. australensis, oesophageal secretion appeared to be responsible for initial extracellular digestion and this was followed by pinocytotic uptake of partly degraded material in pits between the numerous apical lamellae of digestive cells. Posterior dorsolateral gut pockets unique to C. australensis were shown to be blind sacs separated from the external environment by a narrow cytoplasmic bridge, composed of a thin layer of tegument apposed to a thin layer of pocket syncytial epithelium. The pockets are lined with greatly folded syncytium and set in a “capsule” of tissue in which numerous pro-tonephridial flame cells are embedded. It is suggested that the pockets have an osmoregulatory function related to the particular environment and evolutionary history of the host, the primitive lung fish (Dipnoi) Neoceratodus forsteri (Krefft, 1870).