We compared the effect of elevated temperature on morphological development, biomass accumulation and allocation, and gas exchange of three dominant plants (Caragana intermedia Kuanget H.C. Fu, Hedysarum mongolicum Turcz., and Artemisia ordosica Krasch.) growing in Chinese Maowusu sandland. Plants were grown in two temperature chambers (25/20, 28/23 °C, day/night) during 60 d. Tree height, number of leaves, and leaf area were increased in C. intermedia and H. mongolicum seedlings, while in A. ordosica temperature only affected tree height. Elevated temperature increased biomass and reduced the root : shoot ratio in C. intermedia and H. mongolicum seedlings, but not in A. ordosica seedlings. The net photosynthetic rate (PN) and transpiration rate (E) were increased at days 40 and 60 in C. intermedia and H. mongolicum seedlings, while in A. ordosica seedlings no significant effects on E were observed, and PN was increased only at day 60. Water use efficiency (WUE) was reduced at days 40 and 60 in H. mongolicum seedlings, and at day 60 in C. intermedia seedlings. No temperature effect on WUE was observed in A. ordosica seedlings. These different responses indicate that climate change could alter plant communities in Maowusu sandland. and Chun-Wang Xiao, Guang-Sheng Zhou, R. Ceulemans.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 .-), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions. and W. Xue ... [et al.].
Ascorbic acid (Asc) is a major plant antioxidant. L-galactono-1,4-lactone dehydrogenase (GLDH) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Effects of endogenous Asc on resistance to high-temperature stress were studied by using GLDH-overexpressed (GO-2) and GLDH-suppressed transgenic rice (GI-2) as experimental materials. After high-temperature treatment, the maximal quantum yield of PSII was significantly lower in GI-2, and higher in GO-2 compared to wild type rice. The content of reactive oxygen species (ROS) was the highest in GI-2. The higher Asc content resulted in lower lipid peroxidation in GO-2. The contents of chlorophyll, soluble proteins, and Rubisco large and small subunit were positively correlated to the Asc content. These results show that the higher Asc content reduced the accumulation of ROS and maintained the function of rice leaves. We suggest that the higher Asc content could improve the rice resistance to high-temperature stress., Q. L. Zhang, Y. X. Wei, C. L. Peng., and Obsahuje bibliografii
We previously found that Endothelin-11-31 (ET-11-31) exhibited a pro-arrhythmogenic effect in isolated rat hearts. In this study, we further investigated the effects of ET-11-31 on a cell viability and observed [Ca2+]i in cultured cardiomyocytes. Cultured neonatal rat cardiomyocytes were treated with 0.1, 1, and 10 nM ET-11-31 for 24h in the presence or absence of ETA receptor antagonist (BQ123) or phosphoramidon, a NEP/ECE inhibitor. Cell injury was evaluated by supernatant lactate dehydrogenase (LDH) assay, superoxide dismutase (SOD activity, and malondialdehyde (MDA) content. Cell viability was assessed by MTT assay. [Ca2+]i was measured with Fluo-3/AM under a laser confocal microscope. 1) ET-11-31 dose-dependently increased LDH release and decreased cell viability. 2) LDH and MDA levels were significantly elevated and SOD activity decreased after administration of 1 nM ET-11-31 for 24h, and these changes were markedly attenuated by 1 uM BQ123. 3) Exposure to 10 nM ET-11-31 caused a continuous increase in [Ca2+]i to cultured beating cardiomyocytes and termination of [Ca2+]i transient within 6 min, and this change was reversed by 1 uM BQ123 and attenuated by 0.5 mM phosphoramidon. These results suggest that ET-11-31 could cause cell injury, and that the effect of ET-11-31 on [Ca2+]i transients is mainly mediated by ETA receptor and partially attributed to the conversion of ET-11-31 to ET-11-21., A.-J. Ren, X. Yuan, L. Lin, Y.-X. Pan, Y.-W. Qing, W.-J. Yuan., and Obsahuje bibliografii a bibliografické odkazy
We investigated the effect of enhanced atmospheric ammonia (NH3) in combination with low and high nitrogen (LN and HN, respectively) growth medium on photosynthetic characteristics of two maize (Zea mays L.) cultivars (NE5 with high- and SD19 with low N-use efficiency) across long-term growth period and their diurnal change patterns exposed to 10 nl l-1 and 1,000 nl l-1 NH3 fumigation in open-top chambers (OTCs). Regardless of the level of N in medium, increased NH3 concentration promoted maximum net photosynthetic rate (Pmax) and apparent quantum yield (AQY) of both cultivars at earlier growth stages, but inhibited Pmax of NE5 from silking to maturity stage and that of SD19 at maturity stage only above the ambient concentration. Greater positive/less negative responses were predominant in the LN than in the HN treatment, especially for SD19. Dark respiration rate (RD) remained more enhanced in the LN than in the HN treatment for SD19 as well as increased in the LN while decreased in the HN treatment for NE5 at their silking stage, following exposure to elevated NH3 concentration. Additionally, enhanced atmospheric NH3 increased net photosynthetic rate (PN) and stomatal conductance (gs) but reduced intercellular CO2 concentration (Ci) of both cultivars with either the LN or HN treatment during the diurnal period at tasseling stage. The diurnal change patterns of PN and gs showed bimodal curve type and those of Ci presented single W-curve type for NE5, when NH3 concentration was enhanced. As for SD19, single-peak curve type was showed for both PN and gs while single V-curve type for Ci. All results supported the hypothesis that appropriately enhanced atmospheric NH3 can increase assimilation of CO2 by improving photosynthesis of maize plant, especially at earlier growth stages and after photosynthetic "noon-break" point. These impacts of elevated NH3 concentration were more beneficial for SD19 as compared to those for NE5, especially in the LN supply environment. and L. X. Zhang ... [et al.].
The effects of enhanced UV-B radiation on growth and photosynthetic activities were investigated in fronds of the aquatic fern Azolla microphylla Kaulf. The fronds were exposed to UV-B radiation intermittently once in 3 d during 12 d. Biomass and relative growth rate of UV-B treated Azolla plants and the heterocyst frequency of the UV-B treated symbiont decreased resulting in an increase in doubling time over the control. The doubling time was 3.08 d for control and 3.35 d for UV-B irradiated plants. Chl and carotenoid contents per unit fresh mass and photosystem 2 (PS2) activity also decreased under UV-B treatment. Measurements of photosynthetic activity in terms of fluorescence kinetics and PS2 mediated O2 evolution showed that the aquatic fern Azolla is sensitive to UV-B damage. and M. Jayakumar ... [et al.].
The activity of mitochondrial superoxide dismutase (MnSOD) and cytosol superoxide dismutase (CuZnSOD) was measured in corresponding subcellular fractions prepared from the thymi of intact and chronically gonadectomized (GX) rats of both sexes, as well as of GX male and female rats injected subcutaneously with a single dose of 5 mg estradiol benzoate (EB) and/or 2 mg progesterone (P). Animals were sacrificed 2 h or 24 h following hormone treatment. In the females, the activity of MnSOD in the thymus was stable during the estrous cycle and did not change after ovariectomy. Treatment of GX females with estradiol benzoate resulted 2 h later in a significant elevation of MnSOD activity, whereas 24 h later the activity returned back to control values. On the other hand, treatment of GX females with progesterone had no effect on the MnSOD activity. However, combined hormone treatment, in which EB injection preceded progesterone injection by one hour, enhanced the effect on MnSOD activity similar to that of estradiol benzoate alone. The activity of CuZnSOD in cycling rats was increased in proestrus, whereas removal of the ovaries kept the values at low diestrus and estrus levels. Contrary to MnSOD, CuZnSOD activity did not change after EB treatment of GX females, while progesterone increased the enzyme activity at 2 h and 24 h after hormone treatment. However, combined EB+P treatment proved to be ineffective. In the males, neither MnSOD nor CuZnSOD activity was affected by the removal of testes or by progesterone treatment of GX animals. Only EB injection to GX rats significantly increased CuZnSOD activity 24 h later., J. Kasapović, S.B. Pajović, S. Pejić, J.V. Martinović., and Obsahuje bibliografii
To examine the hypothesis that stomatal behavior of plants in dry soil is influenced by a slow recovery from daytime water deficit, we studied the effect of repeated wetting of leaves during evening and night in Cryptomeria japonica seedlings grown in dry soil. After 7 and 10 days of leaf wetting treatment the midday leaf water potential decreased and the transpiration rate increased, respectively. Therefore, we suggest that rapid recovery from daytime water deficit could weaken the water conserving stomatal behavior that adapts to drought conditions in the roots. and T. Tange ... [et al.].
Excessive cadmium (Cd) content in soil leads to a number of phytotoxic effects and challenges agricultural production. Aim of this study was to investigate different responses of two maize inbreds and their hybrid to an elevated Cd content in soil by measuring photosynthetic and biochemical activity and to identify a Cd tolerance mechanism. Antioxidant statusrelated parameters varied significantly between inbreds and treatments. Dry mass increased in both inbreds, but remained unchanged in hybrid. After the Cd treatment, parameters of chlorophyll a fluorescence varied between inbreds and hybrid performance was similar to inbred B84. We concluded that inbred B84 is Cd-sensitive compared to Os6-2, which did not appear to be negatively affected by Cd treatment at this growth stage studied. We suspect that due to a dilution effect in the hybrid, there was no or very weak Cd stress detected by biochemical parameters, although stress was detected by chlorophyll a fluorescence., M. Franić, V. Galić, M. Mazur, D. Šimić., and Obsahuje bibliografii
The relationships between exercise and metabolites as well as between exercise and sarcoplasmic reticulum function were studied in gastrocnemius muscle of ovariectomized-trained rats. Prolonged moderate-intensity exercise, treadmill up-hill run for 90 min with a 10° incline, decreased the muscle glycogen content. Exercise until exhaustion further lowered the glycogen concentration to 13 % of the control, together with a significant decrease of ATP and glucose-6-phosphate concentrations. Also, Ag+-induced Ca2+release, measured in whole muscle homogenate, showed a 30 % reduction on exhaustion, while Ca2+ uptake was unaffected by this exercise. ATPase activities, of both homogenate and SR vesicles, and Ca2+ transport in the latter preparation were not altered on exhaustion. It could be concluded from these results that muscular fatigue in ovariectomized rats after aerobic exercise is caused by the change in energy supply and Ca2+ release from the SR, this latter possibly due to metabolites generated by the exercise., I. Gigli, L. E. Bussmann., and Obsahuje bibliografii