The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers - FERHDL (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php., M. Dobiášová., and Obsahuje bibliografii
a1_In this study we compared several parameters characterizing differences in the lipoprotein profile between members of families with a positive or negative family history of coronary artery disease (CAD). In addition to regular parameters such as the body mass index (BMI), total plasma cholesterol (TC), low density (LDL-C) and high density (HDL-C) cholesterol and triglycerides (TG) we estimated the fractional esterification rate of cholesterol in apoB lipoprotein-depleted plasma (FERHDL) which reflects HDL and LDL particle size distribution. A prevalence of smaller particles for the atherogenic profile of plasma lipoproteins is typical. Log (TG/HDL-C) as a newly established atherogenic index of plasma (AIP) was calculated and correlated with other parameters. The cohort in the study consisted of 29 young (< 54 years old) male survivors of myocardial infarction (MI), their spouses and at least one offspring (MI group; n=116). The control group consisted of 29 apparently healthy men with no family history of premature CAD in three generations, their spouses and at least one offspring (control group; n=124). MI families had significantly higher BMI than the controls, with the exception of spouses. Plasma TC did not significantly differ between MI and the controls. MI spouses had significantly higher TG. Higher LDL-C had MI survivors only, while lower HDL-C had both MI survivors and their spouses compared to the controls. FERHDL was significantly higher in all the MI subgroups (probands 25.85±1.22, spouses 21.55±2.05, their daughters 16.93±1.18 and sons 19.05±1.33 %/h) compared to their respective controls (men 20.80±1.52, spouses 14.70±0.98, daughters 13.23±0.74, sons 15.7±0.76 %/h, p<0.01 to p<0.05). Log (TG/HDL-C) ranged from negative values in control subjects to positive values in MI probands., a2_High correlation between FERHDL and Log (TG/HDL-C) (r = 0.80, p<0.0001) confirmed close interactions among TG, HDL-C and cholesterol esterification rate. The finding of significantly higher values of FERHDL and Log (TG/HDL-C) indicate higher incidence of atherogenic lipoprotein phenotype in members of MI families. The possibility that, in addition to genetic factors, a shared environment likely contributes to the familial aggregation of CAD risk factors is supported by a significant correlation of the FERHDL values within spousal pairs (control pairs: r = 0.51 p<0.01, MI pairs: r = 0.41 p<0.05)., M. Dobiášová, K. Rašlová,H. Rauchová, B. Vohnout, K. Ptáčková, J. Frohlich., and Obsahuje bibliografii