Growth, net photosynthetic rate (PN), chlorophyll fluorescence induction kinetics, and stromal fructose-1,6-bisphosphatase (sFBPase) in annual legumes native to the Mediterranean region, two clovers (Trifolium subterraneum L. ssp. oxaloides Nyman cv. Clare and T. michelianum Savi cv. Giorgia) and two Medicago species (M. polymorpha L. cv. Anglona and M. truncatula Gaertn. cv. Paraggio), shifted from 20 to 10 °C for 1 d or developed at 10 °C were compared with controls kept at 20 °C. Cold development produced a larger stimulation of growth in the clover cv. Giorgia and the Medicago cv. Paraggio. Transferring plants to low temperatures affected PN relatively less in clovers than in Medicago plants. Development at 10 °C relieved the inhibition of photosynthesis in Giorgia and Paraggio, but not in Clare and Anglona, which correlated with increases in the maximum rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (Vcmax), and the photon-saturated rate of electron transport (Jmax). In Medicago, transfer from high to low temperature inhibited photosynthesis in a lesser extent in Anglona than in Paraggio, which showed severe limitations at level of Vcmax and Jmax. Development at 10 °C in Paraggio produced an efficient photosynthetic cold acclimation, this being associated with a two-fold increase of quantum yield of photosystem 2 electron transport (ΔF/F'm) and with the activity of sFBPase. By contrast, Anglona showed an irreversible inhibition of PN coupled with the reduction of carbon metabolism by impairment of Calvin cycle enzyme activities such as RuBPCO and sFBPase, resulting in a poor cold acclimation of photosynthesis in this cultivar. and M. C. Antolín, M. Hekneby, M. Sánchez-Díaz.
Photosynthetic parameters and leaf carbon isotope composition (δ13C) in contrasting rice genotypes in relation to supplemental nitrogen (N) application and water management during the grain-filling period were compared. The changes in stomatal conductance (gs) and ratio of intercellular to ambient CO2 mole fraction (Ci/Ca) depended on the leaf nitrogen concentration (leaf N) in both ‘Hinohikari’ (temperate japonica genotype) and ‘IR36’ (indica genotype). In ‘Hinohikari’, δ13C reflects photosynthetic gas exchange during the grain-filling period, which is indicated by the significant response of δ13C to leaf N. In contrast, in ‘IR36’ δ13C did not depend on leaf N. This varietal difference in δ13C to leaf N can be attributed to a difference in the timing of leaf senescence. In ‘IR36’, leaf N and photosynthetic parameters decreased more rapidly, indicating earlier senescence and a shorter grain-filling period in comparison with ‘Hinohikari’. The significant increase in shoot dry mass in ‘Hinohikari’ resulting from supplemental N application, compared with nonsignificant effect observed in ‘IR36’, suggests that the timing of senescence in relation to the grainfilling period has a preponderant influence on productivity., S. Shimoda., and Obsahuje bibliografii
We investigated the relative importance of pre-anthesis assimilates stored in plant parts, mainly in the stem, and post-anthesis photosynthesis to drought resistance in wheat (Triticum aestivum L.) cultivars Hongwangmai (drought resistant) and Haruhikari (drought sensitive) subjected to two soil moisture regimes: irrigated and non-irrigated. In the irrigated treatment, soil moisture was maintained near field capacity throughout the growing season, while in the non-irrigated treatment water was withheld from 81 d after sowing until maturity. Drought stress reduced grain yield of Hongwangmai and Haruhikari by 41 and 60 %, respectively. Remobilization of pre-anthesis assimilates to the grain (remobilization) was reduced by drought in Hongwangmai but increased in Haruhikari. The contribution of pre-anthesis assimilates to the grain decreased under non-irrigated treatment in Hongwangmai. However, under water stress, Hongwangmai maintained a higher net photosynthetic rate in the flag leaf than Haruhikari. These results indicated that maintenance of post-anthesis photosynthetic rate was related to drought resistance in Hongwangmai rather than to remobilization under drought stress. and T. Inoue ... [et al.].
In many plant species that remain leafless part of the year, CO2 fixation occurring in green stems represents an important carbon gain. Traditionally, a distinction has been made between stem photosynthesis and corticular photosynthesis. All stem photosynthesis is, sensu stricto, cortical, since it is carried out largely by the stem cortex. We proposed the following nomenclature: stem net photosynthesis (SNP), which includes net CO2 fixation by stems with stomata in the epidermis and net corticular CO2 fixation in suberized stems, and stem recycling photosynthesis (SRP), which defines CO2 ling in suberized stems. The proposed terms should reflect differences in anatomical and physiological traits. SNP takes place in the chlorenchyma below the epidermis with stomata, where the net CO2 uptake occurs, and it resembles leaf photosynthesis in many characteristics. SRP is found in species where the chlorenchyma is beneath a
well-developed stomata-free periderm and where reassimilation of internally respired CO2 occurs. SNP is common in plants from desert ecosystems, rates reaching up to 60% of the leaf photosynthetic rate. SRP has been demonstrated in trees from temperate forests and it offsets partially a carbon loss by respiration of stem nonphotosynthetic tissues. Reassimilation can vary between 7 and 123% of respired CO2, the latter figure implying net CO2 uptake from the atmosphere. Both types of stem photosynthesis contribute positively to the carbon economy of the species, in which they occur; they are advantageous to the plant because they allow the maintenance of physiological activity during stress, an increase of integrated water use efficiency, and they provide the carbon source used in the production of new organs., E. Ávila, A. Herrera, W. Tezara., and Obsahuje bibliografii
The contribution of two components (ΔpH and ΔE) of the proton motive force to photosynthesis of C. reinhardtii was studied. Valinomycin, a photophosphorylation uncoupler, decreased significantly the fast phase (related mainly to the membrane electric potential) of millisecond delayed light emission (ms-DLE) of C. reinhardtii. Nigericin, another photophosphorylation uncoupler, decreased the slow phase (related mainly to the proton gradient) and partly also the fast phase of ms-DLE. Both valinomycin and nigericin decreased the net ATP content and photosynthetic rate of C. reinhardtii, but the inhibition by nigericin was stronger than that by valinomycin. Hence both components of the proton motive force contribute to photosynthesis and although the contribution of ΔpH is larger than that of ΔE, the latter is not negligible in photosynthesis of C. reinhardtii. and Qing-Xiu Tang, Jia-Mian Wei.
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) were exposed to ambient (AC) or elevated (EC) [ambient + 350 μmol(CO2) mol-1] CO2 concentration [CO2] using the facilities of open-top-chambers (OTCs) and glass domes (GDs). A combination of gas exchange measurements and application of a biochemical model of photosynthesis were used for the evaluation of CO2 assimilation characteristics. Morphological change was assessed on the base of specific leaf area (SLA). Nitrogen (N) content in the assimilation apparatus was considered a main factor influencing the biochemical capacity. Three experiments confirm the hypothesis that an adjustment of photosynthetic capacity under EC is controlled by the combination of biochemical, morphological, and physiological feedback mechanisms. We observed periodicity of down-regulation of photosynthetic capacity (Experiment No. 1) during the vegetation seasons. In the spring months (May-June), i.e. during the occurrence of active carbon sink associated with the formation of new foliage, up-regulation (10-35 %) of photosynthetic capacity (PNsat) was observed. On the contrary, in the autumn months (September-October) down-regulation (25-35 %) of PNsat was recorded that was mainly associated with reduced carbon sink strength and biochemical change, i.e. decrease of N status (up to 32 %) and accumulation of saccharides (up to 72 %) in leaves. Different adjustments of photosynthetic activities were observed in current (C) and one-year-old (C-1) needles exposed to EC (Experiment No. 2). Strong down-regulation of PNsat and the diminution of the initial stimulation of photosynthetic rate (PNmax) was associated with decreases of both ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity (by 32 %) and RuBP regeneration (by 40 %). This performance was tightly correlated with the absence of active carbon sinks, decrease of N content, and starch accumulation in C-1 needles. Finally, different responses of sun- and shade-adapted needles to EC (Experiment No. 3) were associated with the balance between morphological and biochemical changes. Observed PNsat down-regulation (by 22 %) of exposed needles in EC was predominantly caused by effects of both higher assimilate accumulation and stronger N dilution, resulting from higher absolute photosynthetic rates and incident irradiances in the upper canopy. and O. Urban ... t al.].
Differences in maximal yields of chlorophyll variable fluorescence (Fm) induced by single turnover (ST) and multiple turnover (MT) excitation are as great as 40%. Using mutants of Chlamydomonas reinhardtii we investigated potential mechanisms controlling Fm above and beyond the QA redox level. Fm was low when the QB binding site was occupied by PQ and high when the QB binding site was empty or occupied by a PSII herbicide. Furthermore, in mutants with impaired rates of plastoquinol reoxidation, Fm was reached rapidly during MT excitation. In PSII particles with no mobile PQ pool, Fm was virtually identical to that obtained in the presence of PSII herbicides. We have developed a model to account for the variations in maximal fluorescence yields based on the occupancy of the QB binding site. The model predicts that the variations in maximal fluorescence yields are caused by the capacity of secondary electron acceptors to reoxidize QA-., O. Prášil, Z. S. Kolber, P. G. Falkowski., and Obsahuje bibliografické odkazy
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47'N, 30°58'E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol-1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600-725 µmol mol-1 for 90 % of the exposure time during the "growing-season" (15 April - 15 September) and 625-725 µmol mol-1 for 88 % of the time in the "off-season" (16 September - 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50-60 % for 82 % of the time in the "growing season" and 55-65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5-10 % for 72 % of the time in the "growing season" and 2-12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content. and S. Kellomäki, Kai-Yun Wang, M. Lemettinen.
We compared by chlorophyll (Chl) fluorescence imaging the effects of two strains of the same virus (Italian and Spanish strains of the Pepper mild mottle virus - PMMoV-I and-S, respectively) in the host plant Nicotiana benthamiana. The infection was visualized either using conventional Chl fluorescence parameters or by an advanced statistical approach, yielding a combinatorial set of images that enhances the contrast between control and PMMoV-infected plants in the early infection steps. Among the conventional Chl fluorescence parameters, the non-photochemical quenching parameter NPQ was found to be an effective PMMoV infection reporter in asymptomatic leaves of N. benthamiana, detecting an intermediate infection phase. The combinatorial imaging revealed the infection earlier than any of the standard Chl fluorescence parameters, detecting the PMMoV-S infection as soon as 4 d post-inoculation (dpi), and PMMoV-I infection at 6 dpi; the delay correlates with the lower virulence of the last viral strain. and M. Pineda ... [et al.].
The xanthophyll cycle and the water-water cycle had different functional significance in chilling-sensitive sweet pepper upon exposure to chilling temperature (4 °C) under low irradiance (100 µmol m-2 s-1) for 6 h. During chilling stress, effects of non-photochemical quenching (NPQ) on photosystem 2 (PS2) in dithiothreitol (DTT) fed leaves remained distinguishable from that of the water-water cycle in diethyldithiocarbamate (DDTC) fed leaves. In DTT-fed leaves, NPQ decreased greatly accompanied by visible inhibition of the de-epoxidized ratio of the xanthophyll cycle, and maximum photochemical efficiency of PS2 (Fv/Fm) decreased markedly. Thus the xanthophyll cycle-dependent NPQ could protect PS2 through energy dissipation under chilling stress. However, NPQ had a slighter effect on photosystem 1 (PS1) in DTT-fed leaves than in DDTC-fed leaves, whereas effects of the water-water cycle on PS1 remained distinguishable from that of NPQ. Inhibiting superoxide dismutase (SOD) activity increased the accumulation of O2, the oxidation level of P700 (P700+) decreased markedly relative to the control and DTT-fed leaves. Both Fv/Fm and NPQ changed little in DDTC-fed leaves accompanied by little change of (A+Z)/(V+A+Z). This is the active oxygen species inducing PS1 photoinhibition in sweet pepper. The water-water cycle can be interrupted easily at chilling temperature. We propose that during chilling stress under low irradiance, the xanthophyll cycle-dependent NPQ has the main function to protect PS2, whereas the water-water cycle is not only the pathway to dissipate energy but also the dominant factor causing PS1 chilling-sensitivity in sweet pepper. and X.-G. Li ... [et al.].