Precise wind energy potential assessment is vital for wind energy generation and planning and development of new wind power plants. This work proposes and evaluates a novel two-stage method for location-specific wind energy potential assessment. It combines accurate statistical modelling of annual wind direction distribution in a given location with supervised machine learning of efficient estimators that can approximate energy efficiency coefficients from the parameters of optimized statistical wind direction models. The statistical models are optimized using differential evolution and energy efficiency is approximated by evolutionary fuzzy rules.
The aim of the present study was to test the hypothesis that short-winged (brachypterous) and long-winged (macropterous) adult males of a flightless bug Pyrrhocoris apterus differ in fertilization success. For this purpose, 5, 10 and 28 days old brachypterous and macropterous males were mated for the same period of time with reproductively active 5 days old brachypterous females. The average hatchability of five egg batches of these females was used as a measure of the fertilization success of the males. The results revealed significantly higher hatchability of the eggs laid by females that copulated with 5 or 10 days old brachypterous males than with same-aged macropterous males. In contrast, the average hatchability of eggs of females that copulated with 28 days old brachypterous males was significantly lower than of those mated with same-aged macropterous males. It is the first report of wing morph- and age-related differences in fertilization success of males in insects with a non-functional wing-polymorphism. The possible relationship between wing- and age-related differential fertilization and the mating success of P. apterus males, and differences in the amount of secretion transferred from their accessory glands into the reproductive tract of females during copulation, is discussed.
In Thailand, Anopheles (Cellia) epiroticus Linton et Harbach (Diptera: Culicidae) is the secondary vector of human malaria along coastal regions. While there are some studies of phenotypic variability and population structure of A. epiroticus, more information on morphological variation would enhance epidemiological understanding of medically important mosquito vectors. This research examined morphological variation at three different distances from coastlines of Samut Songkhram Province, Thailand, using landmark-based geometric morphometrics. Wing shape of A. epiroticus was significantly different in the area 0.2 km away from the sea compared to areas 2 and 4 km away from the sea (p < 0.05). Phenotypic variability in wing shape is associated with distance from the sea. Morphological variations in the area closest to the sea were most pronounced, showing a relationship between A. epiroticus and the ecosystem that affects wing geometry. These results provide important information to understand morphological variation of A. epiroticus in coastal areas., Tanawat Chaiphongpachara and Sedthapong Laojun., and Obsahuje bibliografii
Overwintering insects must avoid injury and death from the freezing of tissues and from metabolic disruptions associated with exposure to low, non-freezing temperatures. The winter climates of the world are classified in relation to insect overwintering on the basis of their minimum temperatures and the duration of the winter (when temperatures are below the thermal range for activity and development). Outside the Tropical Wet zone, the severity of exposure to cold (temperature, snowfall, duration of exposure, predictability, variability) can vary from a few days at 0°C to months below -20°C with extremes as low as -60°C. The severity of the temperature exposure may be ameliorated by the selection by insects of overwintering sites (exposed, partly-exposed, protected). The relationships among overwintering habitats, the minimum winter temperature in climatic zones, and the supercooling points (SCP) of over 350 terrestrial insects from published reports were examined. Variability in the SCP among insects within each climatic zone and habitat was wide. Among the freeze-susceptible species that overwintered in exposed or partly-protected habitats the SCP and the cold severity of climate were correlated. This was not the case for insects that overwintered in protected habitats. The SCP's of freeze-tolerant insects were generally higher than the freeze-susceptible insects, and the SCP's were not tightly linked with the cold severity of climatic zone. Insects, both freeze-susceptible and freeze-tolerant, overwintering in exposed habitats had lower SCP's than insects from habitats that offered some protection from ambient temperatures. Thirty-eight species had reports of SCP's for different geographical locations. Although there were occasionally differences in the SCP's, there was no consistent pattern of insects having lower SCP's when overwintering in colder habitats. The incidence of freeze-tolerance was higher in boreal and polar climatic zones than in climatic zones with warmer winters. Holometabola insects had a higher incidence of freeze-tolerance than hemimetabola insects. Suggestions for future research directions are outlined.
The fresh weight, dry weight, and C and N content of the eggs, egg shells and neonate larvae of several satyrines were measured. This was done in order to assess the specificity of the composition of the egg and larvae, the phylogenetic or ecological nature of the variation and the existence of structural constraints on the composition of the offspring. All the traits investigated were found to be highly species-specific. The nature of the variation was not primarily phylogenetic, suggesting that the composition of the offspring has an ecological meaning. However, only a slight association was detected between three life history traits or habitat features and the compositions of the eggs or larvae, namely: female egg dropping was associated with a high C content of the eggs, xerophily with a high C : N ratio, and a high content of N in the larvae with egg diapause. The evidence for intra-specific allometry between the traits investigated and egg weight varied among the species, suggesting that the slope of such relationship may be a specific feature. There was a close to isometric relationship between C and N contents in every species. Therefore simple C : N ratios are independent of egg size, hence they can be used directly in comparative studies. Across species analyses indicated that small offspring contained a proportionally low amount of carbon and had a high dry matter content, suggesting that selection for small eggs was accompanied by selection for an enhanced proportion of nitrogen per egg. Finally, the species with large adult females invested comparatively more nitrogen per egg, which indicates a potential, constraint-based advantage of large adult size.