2’(3’)-0-[N- [2- [3- [5-fluoresceinyl] thioureido] ethyl] carbamoyl] adenosine 5’-triphosphate (FEDA-ATP), a spectroscopic tool used for studying skeletal muscle myosin ATPase subfragment 1, was applied to Na+/K+- ATPase (EC 3.6.1.37). In contrast to the myosin subfragment, we found that FEDA-ATP is not a substrate for Na + /K + -ATPase. On the other hand, FEDA-ATP showed an affinity for both the low (E2, K<j = 2001MM) and the high (Ei, Kd = 22,«M) affinity ATP-binding sites. When the microscopic affinities of FEDA-ATP were used for calculating the macroscopic affinity in the overall reaction according to Kj = (KdEl*KdE2)1/2, the experimentally measured inhibition constant of 66,wM was obtained. To evoke irreversible binding inhibitors, FEDA-ATP was transferred in its chromium (III) and cobalt(III) complex analogs, which are suitable tools for labelling the ATP binding sites of Na + /K+ -ATPase in a specific way.
Management of reservoirs for drinking water supply should be based on a thorough knowledge of water quality changes within variable conditions of hydrology, climate, nutrient loading and water storage. The two-dimensional longitudinal water quality model CE-QUAL-W2 was tested for its ability to predict concentrations of organic matter and trophic conditions in Rimov Reservoir, a small dimictic reservoir (volume 33,000,000 m3, maximum depth 43 m, hydraulic retention time 40 to 160 d) suffering from seasonally increased concentrations of humic substances and symptoms of eutrophication. The model was calibrated on two seasonal courses differing in hydrology and validated on a 1074 day period. The averages of absolute mean errors between simulated and measured vertical profiles of temperature, and concentrations of dissolved organic matter, dissolved oxygen and chlorophyll a in the validation run were 0.9 °C, 0.8 mg l-1, 1.2 mg l-1 and 0.008 mg l-1, respectively. Analysis of results and sensitivity analysis of modelling phytoplankton and phosphorus showed suitability of the mathematical description of their dynamics in the photic zone but not in the deeper layers. In spite of this partial problem, the model was found appropriate for the reliable predictions of water quality dynamics in Rimov Reservoir. and Hospodaření s vodou ve vodárenských nádržích by mělo být založeno na podrobné znalosti vlivu hydrologických, klimatických a limnologických veličin na kvalitu vody. Možnosti matematického modelování změn kvality vody byly testovány pro nádrž Římov na Malši za pomoci dvourozměrného modelu kvality vody CE-QUAL-W2. Model byl zkalibrován na dvou sezónních řadách dat pro hydrologicky různá období a poté byl uplatněn na 1074-denní řadě dat. Byly vyhodnoceny rozdíly mezi měřenými a simulovanými vertikálními profily teploty, koncentrací rozpuštěných organických látek, rozpuštěného kyslíku a chlorofylu. Tyto rozdíly vyjádřené jako velikost absolutní střední chyby byly 0,9 °C, 0,8 mg l-1 , 1,2 mg l-1 a 0.008 mg l-1 . Analýza získaných výsledků a citlivostní analýza modelu ukazují dobrou shodu mezi naměřenou a simulovanou dynamikou zmíněných veličin v eufotické zóně, v nižších a tmavších vrstvách nádrže dochází k nárůstu odchylek modelu od reality. Přes tyto dílčí problémy byl model shledán jako užitečný a nenahraditelný pomocník při úlohách řešících dopad vnějších vlivů na kvalitu vody v nádrži.
An edge of $G$ is singular if it does not lie on any triangle of $G$; otherwise, it is non-singular. A vertex $u$ of a graph $G$ is called locally connected if the induced subgraph $G[N(u)]$ by its neighborhood is connected; otherwise, it is called locally disconnected. In this paper, we prove that if a connected claw-free graph $G$ of order at least three satisfies the following two conditions: (i) for each locally disconnected vertex $v$ of degree at least $3$ in $G,$ there is a nonnegative integer $s$ such that $v$ lies on an induced cycle of length at least $4$ with at most $s$ non-singular edges and with at least $s-5$ locally connected vertices; (ii) for each locally disconnected vertex $v$ of degree $2$ in $G,$ there is a nonnegative integer $s$ such that $v$ lies on an induced cycle $C$ with at most $s$ non-singular edges and with at least $s-3$ locally connected vertices and such that $G[V (C)\cap V_{2} (G)]$ is a path or a cycle, then $G$ has a 2-factor, and it is the best possible in some sense. This result generalizes two known results in Faudree, Faudree and Ryjáček (2008) and in Ryjáček, Xiong and Yoshimoto (2010).