After G. N. Lewis (1875-1946) proposed the term “photon” in 1926, many physicists adopted it as a more apt name for Einstein’s light quantum. However, Lewis’ photon was a concept of a very different kind, something few physicists knew or cared about. In fact, it turns out that the term “photon” was not novel, as the same term was proposed or used earlier, apparently independently, by at least four other scientists. Three of the four early proposals were related to physiology or visual perception, and only one to quantum physics. Priority belongs to the American physicist and psychologist L. T. Troland (1889-1932), who coined the word in 1916, and five years later it was independently introduced by the Irish physicist J. Joly (1857-1933). Then in 1925 a French physiologist, René Wurmser (1890-1993), wrote about the photon, and in July 1926 his compatriot, the physicist F. Wolfers (ca. 1890-1971), did the same in the context of optical physics. None of the four pre-Lewis versions of “photon” were well known and they were soon forgotten., Kdy se objevil termín "foton" a v jakém kontextu? O tom pojednává tento článek významného dánského historika fyziky H. S. Kragha. Obecně se soudí, že za "foton" vděčíme slavnému americkému chemikovi G. N. Lewisovi, který tento termín stvořil roku 1926. Je to pravda, ale Kragh ukazuje jednak, že to bylo v jiném kontextu, než jak chápeme foton dnes, jednak, že několik jiných badatelů navrhlo a použilo termín foton již před Lewisem - na ně se však zapomnělo. Nakonec tedy můžeme konstatovat, že "foton" se zrodil několikrát v období deseti let zhruba před sto lety. (jv), Helge S. Kragh., and Obsahuje bibliografické odkazy
Říše hmyzu poskytuje výjimečnou rozmanitost optických jevů, často pozorovaných jako duhovost barev. Zajímavým objektem pro zkoumání strukturovanosti barev je brouk Chrysina gloriosa z čeledi vrubounovitých. Způsob ovládání světla na submikrometrové škále, který byl nedávno objeven v tvarových buňkách kutikuly, je inspirací pro současné fotonické technologie., The insect kingdom provides us with an exceptional variety of optical phenomena, commonly observed as iridescence. An interesting example for studying structural coloration is the beetle Chrysina gloriosa (family Scarabaeidae). The recent discovery of its control of light at the sub-micrometre scale, in axicon-shaped cuticle cells, is the inspiration for current photonic technologies., Petr Bouchal, Zdeněk Bouchal., and Obsahuje bibliografické odkazy
Od druhé poloviny dvacátého století jsme svědky tvořivého prolínání fyziky a biologie. Tato symbióza je patrná v různých oborech fyziky. Občas i molekulová fyzika zaměřená na detailní porozumění jednoduchým strukturám dokáže vědy o životě inspirovat. V našem příspěvku se podíváme, jak lze nahlédnout do evolučních procesů pomocí molekulových paprsků, laserových experimentů a kvantové chemie., We discuss the role of UV radiation and molecular photostability in the evolution of life. The molecular building blocks of life (nucleic acid bases, aminoacids) are typically stable with respect to UV radiation, yet many questions remain unanswered. In particular, the role of intermolecular interactions is poorly understood. We demonstrate how a combination of photodissociation experiments in molecular clusters with advanced ab initio calculations helps in understanding biological photochemistry., Michal Fárník, Petr Slavíček., and Obsahuje bibliografii
Sunlight is the source of energy for most of the processes on the Earth‘s surface and it represents also the ulitmate renewable energy source for human civilisation. The invention of photovoltaic solar cells and their development to the present highly sophisticated forms represent a story worth telling. The history of photovoltaics contains surprising and dramatic moments as well as steady progress, on a par with the rise of microelectronics. Further, there may still be some surprising new paths, similar to the recent development of hybrid perovskite solar cells., Antonín Fejfar, Martin Ledinský., and Obsahuje seznam literatury