This paper addresses a sweep coverage problem of multi-robot networks with general topologies. To deal with environmental uncertainties, we present discrete time sweep coverage algorithms to guarantee the complete coverage of the given region by sweeping in parallel with workload partition. Moreover, the error between actual coverage time and the optimal time is estimated with the aid of continuous time results. Finally, numerical simulation is conducted to verify the theoretical results.
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.
This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.
Here we present some interesting aspects of interplay between quantum theory and functional analysis. We show that some of the deepest problems in both disciplines are unexpectedly equivalent. Starting from a historical point of view we comment on the following topics: connection between the structure of von Neumann algebras and the structure of quantum theories, construction of quantum integral and logic of quantum systems, Bell inequalities in light of Grothendieck inequality and operator space theory. Finally, we discuss bohrification and topos approach to quantum theory., Martin Bohata, Jan Hamhalter., and Obsahuje bibliografii
The symmetric implicational method is revealed from a different perspective based upon the restriction theory, which results in a novel fuzzy inference scheme called the symmetric implicational restriction method. Initially, the SIR-principles are put forward, which constitute optimized versions of the triple I restriction inference mechanism. Next, the existential requirements of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved from some properties of fuzzy implications. The conditions are obtained for the supremum to become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are provided, and it is shown that the new method is better than the triple I restriction method, because the former is able to let the inference more compact, and lead to more and superior particular inference schemes.
The inertia of an $n$ by $n$ symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order $n$. In this note we classify all the maximal inertias for symmetric sign patterns of order $n$, and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit representations of this operator give us some abstract versions of Noether’s theorems, which can be interpreted in terms of conserved currents for Lagrangians and Euler-Lagrange morphisms.
In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas.
We examine iteration graphs of the squaring function on the rings $\mathbb{Z}/n\mathbb{Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.