V roce 1918 zaznamenal detektor Kamiokande v toku atmosférických neutrin neočekávaný deficit mionových neutrin. V té době se za možné vysvětlení považovaly neutrinové oscilace. Posléze, v roce 1998, při studiu atmosférických neutrin detektorem Super-Kamiokande byly neutrinové oscilace objeveny, což vedlo k závěru, že neutrina mají hmotnost. Cítím, že jsem měl mimořádné štěstí, protože jsem se tohoto vzrušujícího objevu od samého počátku účastnil. Objev nenulových hmotností neutrin otevřel okno ke studiu fyziky nad rámec standardního modelu fyziky elementárních částic, zejména fyziky na škále velmi vysokých energií, jakou je velké sjednocení interakcí elementárních částic. Současně však zbývá mnoho věcí, které je třeba pozorovat na samotných neutrinech. Další studium neutrin by nám mohlo poskytnout informace, které mají fundamentální význam pro naše porozumění přírodě, jako např. původ hmoty ve vesmíru., An unexpected muon neutrino deficit was observed in the atmospheric neutrino flux by Kamiokande in 1988. At that time neutrino oscillation was considered as a possible explanation for the data. Subsequently, in 1998, through the studies of atmospheric neutrinos, Super-Kamiokande discovered neutrino oscillations, establishing that neutrinos have mass. I feel that I have been extremely lucky, because I have been involved in the excitement of this discovery from its very beginning. The discovery of nonzero neutrino masses has opened a window to study physics beyond the Standard Model of elementary particle physics, notably physics at a very high energy scale such as the grand unification of elementary particle interactions. At the same time, there are still many things to be observed in neutrinos themselves. Further studies of neutrinos might give us information of fundamental importance for our understanding of nature, such as the origin of the matter in the Universe., Takaaki Kajita ; přeložil Ivan Gregora., and Obsahuje bibliografii
Damage induced in DNA by numerous chemical and physical factors as well as spontaneously formed imperfections in DNA structure pose a threat to all organisms. To counteract this threat, living cells have evolved a series of DNA repair pathways to correct DNA lesions affecting base pairings or the structure of DNA. Today we understand, in a large part, the molecular mechanisms of these pathways in detail due to the pioneering studies by Tomas LIndahl, Paul Modrich and Aziz Sancar, which opened up this field of research. Tomas Lindahl discovered the molecular machinery of base excision repair - the main cell defence against endogeneous DNA damage. Aziz Sancar characterised, at the molecular level, details of the mechanisms of nucleotide excision repair - the major repair system of DNA damage caused by environmental factors such as UV-irradiation and various genotoxic chemicals including chemotherapeutic agents. Paul Modrich uncovered a mismatch repair - the way how cells resolve errors which occur during DNA replication. Therefore, the Royal Swedish Academy of Sciences awarded jointly Lindahl, Modrich, and Sancar the Nobel Prize in Chemistry 2015 for their "Mechanistic studies of DNA repair". In this paper, we briefly summarise the results of their work., Miroslav Piršel., and Obsahuje seznam literatury
Díky optické mikroskopii mohla vzniknout buněčná biologie. Významnou roli hraje tato mikroskopie též v materiálovém výzkumu a dalších vědních oborech, jakož i mnoha praktických činnostech. Od konce 19. století je zásluhou Lorda Rayleigha a Ernsta Abbeho známo, že rozlišovací schopnost standardních optických mikroskopů je rovna zhruba polovině vlnové délky použitého světla. V uplynulém čtvrtstoletí však vzniklo několik převratných metod, které zlepšily rozlišovací schopnost optických mikroskopů natolik, že místo o mikroskopii můžeme dnes již mluvit o nanoskopii., The invention of light microscope belongs to one of the most fundamental contributions ever made to the advancement of biology. This imaging technique played also an important role in material science and other disciplines, as well as in many practical applications. Before the end of the 19th century. Lord Rayleigh and Ernst Abbe recognised that the resolution limit of optical microscopes is about half the wavelength of the light used. In the past two decades, however, several revolutionary methods were established which improved the resolution of optical microscopes to such an extent that, instead of microscopy, we can now talk about optical nanoscopy., Jaromír Plášek., and Obsahuje seznam literatury
He began his university career as assistant to Professor B. Brauner in the Institute of Analytical Chemistry of Prague’s Charles University. He became the first Professor of Physical Chemistry at this University in 1926. Heyrovsky’s invention of the polarographic method dates from 1922 and he concentrated his further scientific activity on the development of this new branch of electrochemistry. The instrument designed for recording polarization curves was called a polarograph and from that the new method got the name polarography. In 1950, he was appointed director of the newly established Polarographic Institute which was incorporated into the Czechoslovak Academy of Sciences from 1952 to 1992 and since then into the AS CR. and Květa Stejskalová.