Inner structure of isolated intact chloroplasts was observed for the first time by a method of laser scanning microscopy at the temperature of liquid nitrogen at 77 K. The microscope, based on gradient index optics, has a maximum resolution of 440 nm at the wavelength of 650 nm. Chloroplasts were excited into the Q-band of chlorophyll b by a krypton laser line at 647.6 nm and fluorescence was detected using two different interference filters. The 680 nm interference filter detects the regions where photosystem (PS) 2 mainly occurs, the 730 nm interference filter detects domains with predominant location of PS1. Since PS1 occurs mainly in stroma lamellae, whereas PS2 occurs mainly in grana regions we were able to view the structure of thylakoid membrane in isolated intact chloroplast that is the closest to in vivo state. and F. Vácha ... [et al.].
Response of net photosynthetic rate (PN), stomatal conductance
(gs), intercellular CO2 concentration (ci), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) µmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of PN without any change in gs. Under both C800 and C380, water stress decreased PN and gs significantly without any substantial reduction of ci, suggesting that both stomatal and non-stomatal factors regulated PN. However, the photosynthetic efficiency of PS2 was not altered.
Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3- level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress., Y. Mohsenian ... [et al.]., and Obsahuje bibliografii
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 µmol m-2 s-1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv'/Fm'), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv'/Fm', and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 µmol m-2 s-1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance. and C.-Q. Wang, T. Liu
The effects of iso-osmotic salinity and drought stresses on leaf net photosynthetic rate (PN) in two wheat (Triticum aestivum L.) cultivars BR 8 and Norin 61, differing in drought tolerance, were compared. In drought-sensitive Norin 61, the decline of PN was larger than that in drought-tolerant BR 8. Under NaCl treatment, PN decreased in two phases similarly in both cultivars. In the first phase, photosynthetic depression was gradual without any photochemical changes. In the second phase, photosynthetic depression was rapid and accompanied with a decline of the energy conversion efficiency in photosystem 2 (ΦPS2). Our observations suggest that the osmotic factor may induce a gradual depression of photosynthesis due to stomatal closure under both stress treatments. However, under NaCl treatment, a ionic factor (uptake and accumulation of excess Na+) may have direct effects on electron transport and cause more severe photosynthetic depression. The drought tolerance mechanism of BR 8 was insufficient to maintain single-leaf photosynthesis under salinity. and S. Muranaka, K. Shimizu, M. Kato.
We tested the hypothesis that invasive (IN) species could capture resources more rapidly and efficiently than noninvasive (NIN) species. Two IN alien species, Ageratina adenophora and Chromolaena odorata, and one NIN alien species, Gynura sp. were compared at five irradiances. Photon-saturated photosynthetic rate (Pmax), leaf mass (LMA) and nitrogen content (NA) per unit area, and photosynthetic nitrogen utilization efficiency (PNUE) increased significantly with irradiance. LMA, NA, and PNUE all contributed to the increased Pmax, indicating that both morphological and physiological acclimation were important for the three alien species. Under stronger irradiance, PNUE was improved through changes in N allocation. With the increase of irradiance, the amount of N converted into carboxylation and bioenergetics increased, whereas that allocated to light-harvesting components decreased. The three alien species could adequately acclimate to high irradiance by increasing the ability to utilize and dissipate photon energy and decreasing the efficiency of photon capture. The two IN species survived at 4.5 % irradiance while the NIN species Gynura died, representing their different invasiveness. Ageratina generally exhibited higher respiration rate (RD) and NA. However, distinctly higher Pmax, PNUE, Pmax/RD, or Pmax/LMA were not detected in the two invasive species, nor was lower LMA. Hence the abilities to capture and utilize resources were not always associated with invasiveness of the alien species. and Y. L. Feng, J. F. Wang, W. G. Sang.
Hydrated thalli of the lichen Lobaria pulmonaria were either preconditioned to dim irradiance (DI, 5 µmol m-2 s-1) or medium irradiance (MI, 200 µmol m-2 s-1) for 6 h. After this 6 h period, the thalli were allowed to desiccate under the two respective irradiances. Thereafter, these dry lichens were exposed to high irradiance (HI, 1 000 µmol m-2 s-1) for 60 h. After this HI treatment, the maximal photochemical quantum yield (FV/FM) and the de-epoxidation state of xanthophyll cycle pigments (DEPS) were highest in thalli preconditioned to MI. Hence irradiance in the last hydrated period before sampling is significant for the physiological state of lichens. A standardized irradiance pre-treatment before start of experiments is recommended. and J. Štepigová ... [et al.].
Early light-induced proteins (ELIPs) are nuclear-encoded thylakoid proteins. In the present research, two full-length cDNAs (741 and 815 bp), encoding ELIPs (190 and 175 aa) and their genomic sequences, were isolated from tea leaves, and named CsELIP1 and CsELIP2, respectively. Both the deduced CsELIPs contain a chloroplast transit peptide in the N-terminus and a chlorophyll a/b binding protein motif with three transmembrane helices in the C-terminus. The genomic sequences of the two CsELIPs conform to the three-exon pattern of ELIP genomic sequences of other plant species. However, the identities between two CsELIPs and ACJ09655 from gymnosperm species were higher than all of
ELIP-like proteins identified from other angiosperms. Expression analysis showed that the two CsELIP genes were significantly
up-regulated when the photoinhibition occurred in tea leaves, implying that they might be involved in photoprotection., X. W. Li ... [et al.]., and Obsahuje bibliografii
Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro-genase (NDH). and Ming-Xian Jin, Hualing Mi.
Plant invasions may be limited by low radiation levels in ecosystems such as forests. Lantana camara has been classified among the world's 10 worst weeds since it is invading many different habitats all around the planet. Morphological and physiological responses to different light fluxes were analyzed. L. camara was able to acclimate to moderately shaded environments, showing a high phenotypic plasticity. Morphological acclimation to low light fluxes was typified by increasing leaf size, leaf biomass, leaf area index and plant height and by reduced stomatal density and leaf thickness. Plants in full sunlight produced many more inflorescences than in shaded conditions. Physiological acclimation to low radiation levels was shown to be higher stomatal conductance, higher net photosynthetic rates and higher efficiency of photosystem II (PSII). L. camara behaves as a facultative shade-tolerant plant, being able to grow in moderately sheltered environments, however its invasion could be limited in very shady habitats. Control efforts in patchy environments should be mainly directed against individuals in open areas since that is where the production of seeds would be higher and the progress of the invasion would be faster. and J. Carrión-Tacuri ... [et al.].