Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from the low (LA) and high (HA) altitudinal regions were employed to evaluate the plant physiological responses to solar UV-A radiation and near-ambient UV-B radiation (UV-B+A) under the sheltered frames with different solar ultraviolet radiation transmittance. LA-population was more responsive to solar UV-A. Some modification caused by UV-A only existed in LA-population, such as significant reduction of leaf size, relative water content, and chlorophyll (Chl) b content as well as δ13C elevation, coupled with larger increase of contents of total carotenoids (Cars). This higher responsiveness might be an effective pre-acclimation strategy adapting for concomitant solar UV-B stress. Near-ambient UV-B+A radiation caused significant reduction of leaf size and Chl content as well as slight down-regulation of photosystem 2 activity that paralleled with higher heat dissipation, while photosynthetic rate was modestly but significantly increased. The higher photosynthesis under near-ambient UV-B+A radiation could be related to pronounced increase of leaf thickness and effective physiological modification, like the increase of leaf protective pigments (Cars and UV-absorbing compound), constant high photochemical capacity, and improved water economy. and Y. Q. Yang, Y. Yao.
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999-2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (PN) over a range of irradiances. The increase in PN was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B. and M. Šprtová ... [et al.].
Citrus volkameriana (L.) plants were grown for 43 d in nutrient solutions containing 0, 2, 14, 98, or 686 µM Mn (Mn0, Mn2, Mn14, Mn98, and Mn686, respectively). To adequately investigate the combined effects of Mn nutrition and irradiance on photosystem 2 (PS2) activity, irradiance response curves for electron transport rate (ETR), nonphotochemical quenching (qN), photochemical quenching (qP), and real photochemical efficiency of PS2 (ΦPS2) were recorded under 10 different irradiances (66, 96, 136, 226, 336, 536, 811, 1 211, 1 911, and 3 111 µmol m-2 s-1, I66 to I3111, respectively) generated with the PAM-2000 fluorometer. Leaf chlorophyll content was significantly lower under Mn excess (Mn686) compared to Mn0; its highest values were recorded in the treatments Mn2-Mn98. However, ETR and ΦPS2 values were significantly lower under Mn0 compared to the other Mn treatments, when plants were exposed to irradiances ≥96 µmol m-2 s-1. Furthermore, Mn0 plants had significantly higher values of qN and lower values of qP at irradiances ≤226 and ≥336 µmol m-2 s-1, respectively, than those grown under Mn2-Mn686. Irrespective of Mn treatment, the values of ΦPS2 and qN decreased, while those of qP increased progressively by increasing irradiance from I136 to I3111. Finally, Mn2-Mn98 plants were less sensitive to photoinhibition of photosynthesis (≥811 µmol m-2 s-1) than the Mn686 (≥536 µmol m-2 s-1) and Mn0 (≥336 µmol m-2 s-1) ones. and I. E. Papadakis ... [et al.].
Tolerance of photosystem 2 (PS2) to high temperature in apple (Malus domestica Borkh. cv. Cortland) leaves and peel was investigated by chlorophyll a fluorescence (OJIP) transient after exposure to 25 (control), 40, 42, 44, and 46 °C in the dark for 30 min. The positive L-step was more pronounced in a peel than in leaves when exposed to 44 °C. Heat-induced K-step became less pronounced in leaves than in peel when exposed to 42 °C or higher temperature. Leaves had negative L-and K-steps relative to the peel. The decrease of oxygen-evolving complex (OEC) by heat stress was higher in the peel than in the leaves. OJIP transient from the 46 °C treated peel could not reach the maximum fluorescence (Fm). The striking thermoeffect was the big decrease in the relative variable fluorescence at 30 ms (VI), especially in the leaves. Compared with the peel, the leaves had less decreased maximum PS2 quantum efficiency (Fv/Fm), photochemical rate constant (KP), Fm and performance index (PI) on absorption basis (PIabs) and less increased minimum fluorescence (F0) and non-photochemical rate constant (KN), but more increased reduction of end acceptors at PS1 electron acceptor side per cross section (RE0/CS0) and per reaction center (RE0/RC0), quantum yield of electron transport from QA - to the end acceptors (ϕ R0) and total PI (PIabs,total) when exposed to 44 °C. In conclusion, PS2 is more thermally labile than PS1. The reduction of PS2 activity by heat stress primarily results from an inactivation of OEC. PS2 was more tolerant to high temperature in the leaves than in the peel. and L.-S. Cheng, L. Chen.
The distribution of rare earth elements (REEs) in the fern Dicranopteris dichotoma Bernh plants from a light rare earth elements mine (LRM) and a non-mining (NM) area in Longnan county of Jiangxi province, China were investigated by means of inductively coupled plasma-mass spectrometry, transmission electron microscopy, and energy-dispersive X-ray microanalysis. The photosynthetic characteristics of D. dichotoma were studied by chlorophyll (Chl) a fluorescence kinetics. Contents of REEs in the lamina and the root of D. dichotoma were higher than those in soils, and were mainly distributed in lamina. A part of them was found in the chloroplast. By comparing with D. dichotoma from NM area, the efficiency of photosystem 2 photochemistry and electron transport rate were significantly enhanced in lamina of the plant from LRM because most of REEs deposits were distributed along cell wall, in vacuole, and in chloroplast. High contents of REEs in lamina did not decrease the photosynthetic activities in LRM plants of D. dichotoma. Besides, D. dichotoma could change its β-carotene content to avoid the damaging effect of high REEs content. and L. F. Wang ... [et al.].
Significant differences in net photosynthetic rate (PN) of leaves between two maize (Zea mays L.) strains (Shuang 105 and 40×44) grown in the field were observed. At several growth stages, PN of 40×44 was higher than that of Shuang 105 (from 10.3 to 32.5 %). Moreover, the strain 40×44 had a higher plant height, larger leaf area, lower chlorophyll content, and higher photochemical efficiency of photosystem 2 (PS2) (Fv/Fm and ΔF/Fm') than strain Shuang 105. Shuang 105, which showed lower PN, had lower stomatal conductances (gs) but slightly higher intercellular CO2 concentrations (Ci) than those of 40×44. Hence the differences in
PN between the two strains did not result from the difference in gs, but probably from that in light reaction system. and Hua Jiang, Da-Quan Xu.
At the whole plant level, the effect of stress is usually perceived as a decrease in photosynthesis and growth. That is why this review is focused mainly on the effect of drought on photosynthesis, its injury, and mechanisms of adaptation. The analysed literature shows that plants have evolved a number of adaptive mechanisms that allow the photochemical and biochemical systems to cope with negative changes in environment, including increased water deficit. In addition, the acquisition of tolerance to drought includes both phenotypic and genotypic changes. The approaches were made to identify those metabolic steps that are most sensitive to drought. Some studies also examined the mechanisms controlling gene expression and putative regulatory pathways. and I. Yordanov, V. Velikova, T. Tsonev.
Photon-induced absorbance changes at 830 nm (ΔA830) related to redox transformations of P700, primary electron donor of photosystem 1 (PS1), were examined in barley leaves treated with diuron and methyl viologen. In such leaves, only soluble reductants localized in chloroplast stroma could serve as electron donors for P700+. Δ A830 were induced by 1-min irradiation of leaves with "actinic light" (AL, 700±6 nm) of various irradiances. Two exponentially decaying components with half-times of 2.75 (fast component, relative magnitude of 62 % of ΔA830) and 11.90 s (slow one, 38 % of ΔA830) were distinguished in the kinetics of dark relaxation of ΔA830 after leaf irradiation with saturating AL. The components reflecting P700+ dark reduction in two units of PS1 differed in the rate of electron input from stromal reductants. The decline in AL irradiance reduced steady state δA830 magnitude, which was also accompanied by a decrease in the contribution of fast component to the overall P700+ dark reduction kinetics. The photon-response curves were obtained separately for rapidly and slowly decaying δA830. The values of half-saturating irradiance were 0.106 and 0.035 μmol m-2 s-1 for rapidly and slowly reduced PS1 units, respectively. The ratio of rate constants of P700+ dark reduction for rapidly and slowly reduced PS1 units was 1.4 times higher than the ratio of their half-saturating irradiances thus indicating higher relative antenna size in rapidly reduced PS1 units. The latter finding, taken together with higher relative amount of P700, favours the view that rapidly and slowly reduced PS1 units reflect P700+ reduction by stromal reductants in spatially separated PS1α and PS1β complexes. and E. A. Egorova, N. G. Bukhov.
Bean (Phaseolus vulgaris L. cv. Berbukskaya) seedlings were pre-treated with choline compounds, 19 mM 2-ethyltrimethylammonium chloride (Ch) or 1.6 mM 2-chloroethyltrimethylammonium chloride (CCh), during 24 h, then after 6 d the excised primary leaves were exposed to UV-B and high temperature stress. Chlorophyll (Chl) fluorescence, delayed light emission, accumulation of photosynthetic pigments, contents of thiobarbituric acid reactive substances, and activities of the active oxygen detoxifying enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) were examined. Pre-treatment of plants with Ch or CCh enhanced the resistance of photosystem 2 (PS2) photochemistry to UV-B and heat injuries. The higher stress resistance can be explained by the increased activity of the detoxifying enzymes. The increased content of UV-B-absorbing pigments may also contribute to the enhanced resistance of choline-treated plants to UV-B radiation. and V. D. Kreslavski ... [et al.].
The inhibition of photosynthetic activity by bisulphite was studied in intact leaves of abscisic acid (ABA)-treated and non-treated (control) barley plants. ABA inhibited the photosynthetic process as evidenced by lower values of chlorophyll fluorescence kinetic parameters Fv/Fm (photosystem 2 activity) and Rfd (vitality index, related to the whole photosynthetic activity) compared with ABA-non-treated plants. After bisulphite treatment, the extent of inhibition was smaller in ABA-treated plants than in the control ones indicating a protective effect of ABA. The protective action sites of ABA were the QA reduction and the Calvin cycle. and C. N. N'Soukpoè-Kossi ... [et al.].