The aim was to study the blood-brain permeability according to the distribution in the rat brain of Evans blue (EB) and sodium fluorescein (NaFl) administered by an intracarotid injection. Eighteen animals were divided into six groups according to the state of the blood-brain barrier (BBB) at the moment when the dyes were being applied. In the first two groups, the BBB was intact, in groups 3 and 4 the barrier had been opened osmotically prior to the application of the dyes, and in groups 5 and 6 a cellular edema was induced by hyperhydration before administration of the dyes. The intracellular and extracellular distribution of the dyes was studied by fluorescence microscopy. The histological picture thus represented the morphological correlate of the way BBB permeability had been changed before the application of the dyes., P. Kozler, J. Pokorný., and Obsahuje bibliografii
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure., L. A. Shimoda, J. S. K. Sham, J. T. Sylvester., and Obsahuje bibliografii
We present new formulae providing equivalent quasi-norms on Lorentz-Karamata spaces. Our results are based on properties of certain averaging operators on the cone of non-negative and non-increasing functions in convenient weighted Lebesgue spaces. We also illustrate connections between our results and mapping properties of such classical operators as the fractional maximal operator and the Riesz potential (and their variants) on the Lorentz-Karamata spaces.
Influence of respiration on photosynthesis in Synechocystis PCC6803 was studied by measuring the redox transients of cytochrome f (cyt f) upon excitation of the cells with repetitive single turnover flashes. Upon the addition of KCN the flash-induced oxidation of cyt f was increased and the rereduction of cyt f+ was accelerated. Dependence of these effects on the concentration of KCN clearly demonstrated the existence of two cyanide-sensitive oxidases interacting with photosynthesis: cyt aa3, which was sensitive to low concentrations of cyanide, and an alternative oxidase, which could be suppressed by using ≥1 mM KCN. The interaction between the photosynthetic and the respiratory electron transport chains was regulated mainly by the activity of the alternative cyanide-sensitive oxidase. The oxidative pathway involving the alternative cyanide-sensitive oxidase was insensitive to salicyl hydroxamic acid and azide. The close resemblance of the inhibition pattern reported here and that described for chlororespiration in algae and higher plants strongly suggest that an oxidase of the same type as the alternative cyanide-sensitive oxidase of cyanobacteria functions as a terminal oxidase in chloroplasts. and C. Büchel, O. Zsíros, G. Garab.
Methods of analyses of biological time series are presented and compared to the traditional techiiiques based on the Fourier transform. Paranietric methods are used for computation of the autoregressive estimator, for the model order selection and for the spectrum estirnation. A nonlinear analysis deals with the state-space trajectory reconstruction and with the fractal and embedding dirnension estirnation. Experimental resiilts compare the abilities of traditional, pararnetric and nonlinear methods to distinguish different cognitive States of the human operator by an analysis of an EEG curve.
Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude. and N. Kumar ... [et al.].
High altitude profoundly influenced plant diversity and distribution on mountains of southern Sinai (Egypt). Plants exhibiting the C3-mode of photosynthesis were widely distributed along the altitudinal transect. Plants exhibiting the C4-mode were restricted below an altitude of about 1400 m above sea level. The transition from C3-dominated areas to C4-dominated areas occurred between 1200 and 1400 m a.s.l. and O. H. Sayed, M. K. Mohamed.
On the basis of solid-state aluminium-27 nuclear magnetic resonance measurements a new organo-aluminium complex in coal substance was discovered in the solid extracts obtained both from the Ostrava-Karviná bituminous coal and the North Bohemian Basin brown coal. In the 27 Al MAS NMR spectra it was found that the significant chemical shift at 13.6-14.6 ppm corresponds with that obtained for the aluminium hexaphenoxide complex (14.2 ppm). Therefore, organo-aluminium complex with hexa-coordination to oxygen is present in coal substance., Pavel Straka., and Obsahuje bibliografické odkazy