In this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI) river segments of the Celone stream (southern Italy) whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf) and the predictability of dry flow conditions (Sd6). Measured streamflow data were used to calculate the metrics in present conditions (impacted). Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT) model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6) before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.
Lagtimes and times of concentration are frequently determined parameters in hydrological design and greatly aid in understanding natural watershed dynamics. In unmonitored catchments, they are usually calculated using empirical or semiempirical equations developed in other studies, without critically considering where those equations were obtained and what basic assumptions they entailed. In this study, we determined the lagtimes (LT) between the middle point of rainfall events and the discharge peaks in a watershed characterized by volcanic soils and swamp forests in
southern Chile. Our results were compared with calculations from 24 equations found in the literature. The mean LT for 100 episodes was 20 hours (ranging between 0.6–58.5 hours). Most formulae that only included physiographic predictors severely underestimated the mean LT, while those including the rainfall intensity or stream velocity showed better agreement with the average value. The duration of the rainfall events related significantly and positively with LTs. Thus, we accounted for varying LTs within the same watershed by including the rainfall duration in the equations that showed the best results, consequently improving our predictions. Izzard and velocity methods are recommended, and we suggest that lagtimes and times of concentration must be locally determined with hyetograph-hydrograph analyses, in addition to explicitly considering precipitation patterns.
The complex environmental research (hydrology, vegetation, soils and ground water) has been carried out in nature reserves, located on the Danube banks within the zone of broad-leaved forests in Germany. Under comparison were terrestrial ecosystems along the regulated and natural rivers. It was established that the weirs, dams with low head of water and small artificial reservoirs affects upon the vegetation and soils of floodplains to be manifested some decades later. A comprehensive analysis of trends in mean annual water level, water flow and the precipitation for the long period revealed the significant influence of natural long-term variability of the water content on the vegetation dynamics in floodplains. The methods, suggested by the authors made possible to assess the after-effects upon floodplain ecosystems due to changes in the river flow regime caused by different hydrotechnical constructions. and V prírodných rezerváciách v blízkosti Dunaja (v Nemecku) v oblasti pokrytej listnatými lesmi bol vykonaný komplexný environmentálny výskum (hydrológia, vegetácia, pôdy a podzemné vody). Porovnávali sa ekosystémy pozdĺž regulovaných a prirodzených tokov. Zistilo sa, že hate a priehrady s relatívne malým vzdutím, ako aj malé vodné nádrže ovplyvňovali vegetáciu a pôdy v záplavových územiach tak, že sa to prejavilo už o niekoľko desaťročí neskôr. Vyčerpávajúca analýza trendov priemernej ročnej výšky hladín, prietokov a zrážok počas dlhého obdobia pomohla objasniť významný vplyv prirodzenej dlhodobej variability obsahu vody na dynamiku vegetácie v zátopových územiach. Metóda navrhnutá autormi umožňuje určiť následné vplyvy zmien vodného režimu tokov spôsobených hydrotechnickými stavbami na ekosystém v záplavovom území.
The analysis of the evolution of learning with graphical maps is based on the placement of the individuals in positions that are computed on the basis of their answers to certain tests. These techniques are useful for detecting similarities between the knowledge profiles of the subjects and can also be used for assessing the acquisition of capabilities after a course. In this paper, we propose to extend some graphical exploratory analysis techniques to the case where there are missing or conflicting answers in the tests. We will also consider that either a missing or unknown answer, or a set of conflictive answers to a survey, is aptly represented by an interval or a fuzzy set. This representation causes that each individual in the map is no longer a point but a figure whose shape and size determine the coherence of the answers and whose position with respect to its neighbors determines the similarities and differences between the individuals.
Accuracy alone can be deceptive when evaluating the performance of a classifier, especially if the problem involves a high number of classes. This paper proposes an approach used for dealing with multi-class problems, which tries to avoid this issue. The approach is based on the Extreme Learning Machine (ELM) classifier, which is trained by using a Differential Evolution (DE) algorithm. Two error measures (Accuracy, $C$, and Sensitivity, S) are combined and applied as a fitness function for the algorithm. The proposed approach is able to obtain multi-class classifiers with a high classification rate level in the global dataset with an acceptable level of accuracy for each class. This methodology is evaluated over seven benchmark classification problems and one real problem, obtaining promising results.
a1_This study evaluated the relationship between photosynthetic carbon accumulation and symbiotic nitrogen nutrition in young fully expanded leaves of 30 nodulated cowpea genotypes grown in the field at Manga, Ghana, in 2005 and 2006. Estimates of fixed-N in photosynthetic leaves revealed greater symbiotic N in genotypes with higher photosynthetic rates and increased leaf transpiration rate/efficiency. There was also greater C accumulation in genotypes with higher symbiotic N and/or total N. Additionally, genotypes with high contents of C per unit of leaf total N exhibited greater C per unit of leaf N-fixed. The C/N and C/Rubisco-N ratios were generally similar in their magnitude when compared to the C/N-fixed ratio due possibly to the fact that Rubisco accounts for a high proportion of photosynthetic leaf N, irrespective of whether the enzyme was formed from soil N or symbiotic N. Cowpea genotypes that relied heavily on soil N for their N nutrition exhibited much higher C/N-fixed ratios, while conversely those that depended more on symbiosis for meeting their N demands showed markedly lower C/N-fixed values. For example, genotypes Omondaw, Bensogla, IT93K-2045-29, and Sanzie, which respectively derived 83.9, 83.1, 82.9, and 76.3% N from fixation, recorded lower C/N-fixed ratios of 10.7, 12.2, 12.1, and 13.0 mg mg-1 in that order in 2005. In contrast, genotypes Botswana White, IT94D-437-1, TVu1509, and Apagbaala, which obtained 14.8, 15.0, 26.4, and 26.0% of their N nutrition from fixation, showed high C/N-fixed values of 84.0, 69.0, 35.2, and 40.6 mg.mg-1, respectively, in 2005., a2_This clearly indicates that genotypes that obtained less N from symbiosis and more N from soil revealed very high C/N-fixed values, an argument that was reinforced by the negative correlations obtained between the three C/N ratios (i.e. C/N, C/Rubisco-N, and C/N-fixed) and leaf N concentration, percentage nitrogen derived from fixation, total N content, amount of N-fixed, and Rubisco N. These data suggest a direct link between photosynthetic C accumulation and symbiotic N assimilation in leaves of nodulated cowpea, and where genotypes derived a large proportion of their N from fixation, photosynthetic C yield substantially increased., A. K. Belane, F. D. Dakora., and Obsahuje seznam literatury
This paper presents a method for assessing the retention capacity of a floodplain in the course of flooding and for estimating the significance of its water storage for transforming a flood wave. The method is based on two-dimensional numerical modeling of the flood flow in a river channel and in the adjacent floodplains, and is suitable for cases when the morphology of the flooding area is variable and complex, e.g. broad inundation areas with meandering channels. The approach adopted here enables us to quantify the retention capacity for inundation areas of various characters and with various land uses, and provides a tool for estimating the efficiency of possible measures for increasing the water storage capacity of a floodplain. The retention capacity is estimated using an evaluation of a series of detailed flood flow modeling results; the flood wave transformation effect is predicted with the aim of creating a non-linear reservoir model. A parametric study of the floodplain retention capacity for the upper branch of the Lužnice River is presented here, and the results for the current state and for various hypothetical scenarios of changes in geometry and land use are evaluated and compared. and V příspěvku je prezentována metodika pro stanovení retenční kapacity inundačního území při povodňových průtocích a jeho význam pro transformaci povodňové vlny. Metoda využívá dvourozměrný numerický model proudění vody korytem a přilehlým inundačním územím a je vhodná pro případy, kdy charakter nivy je proměnlivý a velmi komplikovaný, např. široká inundační území s meandrujícími toky. Navržený způsob řešení umožňuje kvantifikovat retenční schopnosti niv různého charakteru při různých způsobech využívání a umožňuje případně navrhnout úpravu inundačního území tak, aby transformační účinek při průchodu povodňové vlny byl co největší. Retenční kapacita inundačního území je stanovena na základě výsledků podrobného modelování proudění vody při různých průtokových stavech a transformace povodňové vlny je řešena pomocí iteračního postupu založeného na Bratránkově metodě. V příspěvku je uvedena parametrická studie kvantifikace retenční kapacity nivy na základě vyhodnocení a porovnání transformační schopnosti pro nivu Lužnice v jejím horním úseku pro současný přirozený stav a pro různé teoretické scénáře změněného charakteru a způsobu využívání nivy.
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (PN) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar
gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species., A. M. Feistler, G. Habermann., and Obsahuje bibliografii
The soil engineer needs to be able to readily identify difficult or problematic soils and to determine the amount of settlement that may occur. This paper deals with the assessment and identification of three types of difficult soils: collapsible soils, swelling soils, and liquefiable soils. In the first instance, the study investigates the effect of some soil properties on wetting-induced collapse strain and the swelling potential of soils. Also, two new methods for predicting soil collapse and swelling potential are developed. The proposed relationships correlate between collapse strain and swelling potential and some soil parameters which are believed to govern soil collapse and swelling. Validation of these two relationships with some data reported in literature is also examined. Furthermore, the paper describes the different steps suggested in a new procedure for soil liquefaction assessment. The procedure was presented in the form of an evaluation guide. In addition, a relationship was suggested for computing the potential for liquefaction. An application of the proposed procedure to a practical case is included in order to validate and illustrate the different steps to be followed in the suggested evaluation procedure.
In this work the performance of Reynolds Averaged Navier-Stokes (RANS) simulations to predict the flow structure developed by the presence of a sidewall obstacle in a uniform open-channel shallow flow is discussed. The tested geometry was selected due to its important role in several fluvial applications, such as the control of riverbank erosion and the creation of improved ecological conditions in river restoration applications. The results are compared against experimental laboratory velocity fields obtained after Large Scale Particle Image Velocimetry (LSPIV) measurements. It is shown that the length of reattachment of the separated shear layer generated by the obstacle is well predicted by a Reynolds Stress Model, while classical two-equation models show important limitations. All the performed RANS simulations are unable to properly predict the formation of a secondary gyre region, which develops immediately downstream the obstacle.