a1_The emergence of cryptosporidiosis, a zoonotic disease of the gastrointestinal and respiratory tract caused by Cryptosporidium Tyzzer, 1907, triggered numerous screening studies of various compounds for potential anti-cryptosporidial activity, the majority of which proved ineffective. Extracts of Indonesian plants, Piper betle and Diospyros sumatrana, were tested for potential anti-cryptosporidial activity using Mastomys coucha (Smith), experimentally inoculated with Cryptosporidium proliferans Kváč, Havrdová, Hlásková, Daňková, Kanděra, Ježková, Vítovec, Sak, Ortega, Xiao, Modrý, Chelladurai, Prantlová et McEvoy, 2016. None of the plant extracts tested showed significant activity against cryptosporidia; however, the results indicate that the following issues should be addressed in similar experimental studies. The monitoring of oocyst shedding during the entire experimental trial, supplemented with histological examination of affected gastric tissue at the time of treatment termination, revealed that similar studies are generally unreliable if evaluations of drug efficacy are based exclusively on oocyst shedding. Moreover, the reduction of oocyst shedding did not guarantee the eradication of cryptosporidia in treated individuals. For treatment trials performed on experimentally inoculated laboratory rodents, only animals in the advanced phase of cryptosporidiosis should be used for the correct interpretation of pathological alterations observed in affected tissue. All the solvents used (methanol, methanol-tetrahydrofuran and dimethylsulfoxid) were shown to be suitable for these studies, i.e. they did not exhibit negative effects on the subjects. The halofuginone lactate, routinely administered in intestinal cryptosporidiosis in calves, was shown to be ineffective against gastric cryptosporidiosis in mice caused by C. proliferans., a2_In contrast, the control application of extract Arabidopsis thaliana, from which we had expected a neutral effect, turned out to have some positive impact on affected gastric tissue., Andrea Valigurová, Radka Pecková, Karel Doležal, Bohumil Sak, Dana Květoňová, Martin Kváč, Wisnu Nurcahyo, Ivona Foitová., and Obsahuje bibliografii
Haberlea rhodopensis Friv. is unique with its ability to survive desiccation to an air-dry state during periods of extreme drought and freezing temperatures. To understand its survival strategies, it is important to examine the protective mechanisms not only during desiccation but also during rehydration. We investigated the involvement of alternative cyclic electron pathways during the recovery of photosynthetic functions after freezing-induced desiccation. Using electron transport inhibitors, the role of PGR5-dependent and NDH-dependent PSI-cyclic electron flows and plastid terminal oxidase were assessed during rehydration of desiccated leaves. Recovery of PSII and PSI, the capacity of PSI-driven cyclic electron flow, the redox state of plastoquinone pool, and the intersystem electron pool were analyzed. Data showed that the effect of alternative flows is more pronounced in the first hours of rehydration. In addition, the NDH-dependent cyclic pathway played a more determining role in the recovery of PSI than in the recovery of PSII.
The study aimed to determine the linkage between soil exchangeable potassium (K+) concentration and stream water K+ concentration during rainfall and snowmelt events in small catchments with different land use (Carpathian Foothills, Poland). The complementary geochemical and hydrochemical approach used in the study produced new information on the role of particular soil horizons and contributing areas such as hillslope or riparian areas in K+ delivery to stream channels during events. Horizons lying above the nearly impermeable fragipan (Btx) play the most important role in the process of K+ influx to streams during most event types except snowmelts with frozen soils, in all the studied catchments. In the woodland catchment, rapid flushing of K+ from the topsoil Ah horizon with higher hydraulic conductivity (Ksat) and higher exchangeable K+ concentrations than in the lying lower E horizon resulted in a clockwise hysteresis of K+ in stream water during most events. In agricultural catchments, changes in stream water K+ concentration during events were determined by distinct differences between soil exchangeable K+ concentrations on hillslopes and in riparian areas.
Research on hand preference in non-human primates provides information about the evolutionary origin of population-level bias of human handedness. Human hand preference has been shown to remain stable throughout an individual's lifespan. However, the stability of hand preference and its change with age in non-human primates remains questionable. We recorded hand use in lion-tailed macaques (Macaca silenus) during simple reaching tasks in three time periods over six years. We tested the effect of age and body posture on the direction and strength of hand preference in 23 observed individuals. In a subsample of 13 individuals followed for two or three subsequent time periods, we assessed the stability of hand preference across study periods. The direction of hand preference was highly stable; we detected no individuals changing from a left- to right-, or right- to left- preference and repeated quantitative measures of hand preference were correlated among subsequent study periods. Hand preference was, however, reinforced in older individuals and an individual's hand preference was stronger in postures with both hands free for foraging. Stable hand preference at an individual level, and its reinforcement over an individual's lifetime, is emerging as a robust finding across the primate order.
Rock dwelling organisms (lithobionts) such as cyanobacteria (prokaryotes) and chlorolichens (eukaryotes) abound in the Negev Desert, where they cover almost all calcareous bedrocks and rock particles (cobbles, boulders). In a small limestone watershed in the Negev Highlands, cyanobacteria inhabit the south-facing (SF) bedrocks, epilithic lichens (accompanied by endolithic lichens) inhabit the north-facing (NF) bedrocks, while endolithic lichens cover most of the cobbles and boulders in both aspects. In order to study their contribution to runoff water, a pair of runoff plots was established on habitats with cyanobacteria, endolithic lichens, and epilithic lichens. Rain and runoff were collected during the hydrological year 2006/07, and the chemical composition (Ca, Mg, Na, K, Cl, SO4, HCO3, Si) of the rain and runoff water was analyzed. Several patterns were observed: (a) as indicated by Si, more dust accumulated on the bedrocks; (b) all substrates exhibited high amounts of Ca, and HCO3; (c) while SF-bedrocks showed enrichment in K, both bedrocks (and especially the NF bedrocks), as well as the NF boulders showed an enrichment in Mg. While the enrichment in Ca and HCO3 can be explained by the contribution of the limestone parent material, the enrichment in K and Mg can be explained by the contribution of the living lithobionts, with K being mainly contributed by the cyanobacteria and Mg mainly by the epilithic lichens. Ion enrichment may therefore be aspect-dependent, reflecting the lithobiont distribution within the drainage basin, partially explaining the enrichment in K and Mg previously recorded in runoff water from the Negev.
To explore local adaptation in wild populations at a fine spatial scale we characterized the genetic variability of eight closely located populations of Drosophila subobscura and its associations with microhabitat environmental conditions. Three different genetic markers were assessed: chromosomal inversions, a SNP of mitochondrial ND5 gene and nuclear microsatellites. Population genetic analyses of chromosomal variability revealed significant genetic differentiation between these populations. Gene arrangement frequencies on the E chromosome contributed most to these differences. We also investigated role of mito-nuclear epistasis in mitochondrial genome differentiation and revealed weak linkage disequilibrium (LD) exclusively between O3+4 inversion arrangement and mitochondrial DNA haplotype I in two populations. In addition, the trend in the LD between OST chromosomal arrangement and haplotype II was general in the total sample. Microsatellite analysis revealed an absence of stochastic processes, like census reduction, upon population differentiation. Only a small amount of the genetic variation is related to geographic distance, while most (97%) is attributable to other factors and in some degree to microhabitat variables (temperature, humidity). The analysis of these factors revealed they effect inversion arrangement frequencies, especially E1+2+9, EST and OST. Even though this model organism is known for its high mobility and mostly large effective population size, the results presented here reveal that local adaptations can occur even at a small spatial scale. We propose that locally adapted alleles within chromosomal inversions, as well as joint selective pressures acting on mitochondrial and nuclear genomes, are responsible for the observed adaptation to microhabitat conditions.
Underground mining activity in the region of the Upper Silesian Coal Basin (USCB) results in ground displacements scattered on a large area. Both the locations and the velocities of the displacements depend on many factors, such as the current location of the mining front, the mining depth and system, as well as geological conditions. Although SAR interferometry techniques allow the monitoring of such ground displacements, in a regional scale (as is the case of the USCB) SAR images must be appropriately processed (from a number of frames and swaths), and this is the problem addressed in this article. The implementation of algorithms for analyzing time series allows observations of displacements in both time and space. The authors also analyze the influence of mining operations on the road infrastructure and mining waste heaps located in the area and investigate the potential for the monitoring of secondary influence (due to induced seismic tremors). As a result of these investigations, the article presents the quality of the InSAR-SBAS data and the potential for their employment in the measurements.
Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.