Hyperandrogenic states in pregnancy are almost always the result of a condition that arises during pregnancy. The onset of virilization symptoms is often very fast. The mother is protected against hyperandrogenism by a high level of SHBG, by placental aromatase and a high level of progesterone. The fetus is protected from the mother’s hyperandrogenism partly by the placental aromatase, that transforms the androgens into estrogens, and partly by SHGB. Nevertheless there is a significant ri sk of virilization of the female fetus if the mother’s hyperandrogenic state is serious. The most frequent cause of hyperandrogenic states during pregnancy are pregnancy luteoma and hyperreactio luteinalis. Hormonal production is evident in a third of all luteomas, which corresponds to virilization in 25-35 % of mothers with luteoma. The female fetus is afflicted with virilization with two thirds of virilized mothers. Hyperreactio luteinalis is created in connection with a high level of hCG, e.g. during multi-fetus pregnancies. This condition most frequently arises in the third trimester, virilization of the mother occurs in a third of cases. Virilization of the fetus has not yet been described. The most serious cause of hyperandrogenism is represented by ovarian tumors, which are fortunately rare., N. Kaňová, M. Bičíková., and Obsahuje bibliografii a bibliografické odkazy
There is evidence that a higher serum level of bilirubin (BIL) may be a protective factor for autoimmune diseases. We examined the effect of BIL supplementation in adjuvant-induced arthritis (AIA) where oxidative stress, inflammation and inadequate immune response are present. Male Lewis rats were randomized into groups: CO - control, AIA - untreated adjuvant-induced arthritis, AIA-BIL - adjuvant-induced arthritis administrated BIL (200 mg/kg b.w. daily i.p. during 14 days). Change of hind paw volume in the AIA-BIL group in comparison to the AIA group was significantly decreased after BIL administration. In CO and AIA groups we found almost untraceable levels of BIL. In the AIA-BIL group hyperbilirubinemia was observed. BIL administration significantly decreased plasma levels of C-reactive protein and ceruloplasmin in the AIA-BIL group in comparison to the AIA group. The values of white and red blood cells, hemoglobin and hematocrit were significantly decreased in AIA-BIL after BIL supplementation. Organs like spleen and thymus had a lower weight in AIA-BIL than in AIA. Histological findings showed decreased or even absent damage in hind paw joint of AIA-BIL animals. We observed an immunomodulatory effect of BIL on AIA development, which may also have a novel pharmacological impact., K. Bauerova, F. Drafi, V. Kuncirova, S. Ponist, D. Mihalova, P. Babal, T. Sykora., and Obsahuje bibliografii
The metabolic pathways that contribute to maintain serum calcium concentration in narrow physiological range include the bone remodeling process, intestinal absorption and renal tubule resorption. Dysbalance in t hese regulations may lead to hyper - or hypocalcemia. Hypercalcemia is a potentionally life -threatening and relatively common clinical problem, which is mostly associated with hyperparathyroidism and/or malignant diseases (90 %). Scarce causes of hypercalce mia involve renal failure, kidney transplantation, endocrinopathies, granulomatous diseases, and the long -term treatment with some pharmaceuticals (vitamin D, retinoic acid, lithium). Genetic causes of hypercalcemia involve familial hypocalciuric hypercalc emia associated with an inactivation mutation in the calcium sensing receptor gene and/or a mutation in the CYP24A1 gene. Furthermore, hypercalcemia accompanying primary hyperparathyroidism, which develops as part of multiple endocrine neoplasia (MEN1 and MEN2), is also genetically determined. In this review mechanisms of hypercalcemia are discussed. The objective of this article is a review of hypercalcemia obtained from a Medline bibliographic search., I. Žofková., and Obsahuje bibliografii
To determine whether changes in partial pressure of CO2 participate in mechanism enlarging the lung functional residual capacity (FRC) during chronic hypoxia, we measured FRC and ventilation in rats exposed either to poikilocapnic (group H, FIO2 0.1, FICO2 <0.01) or hypercapnic (group H+CO2, FIO2 0.1, FICO2 0.04-0.05) hypoxia for the three weeks and in the controls (group C) breathing air. At the end of exposure a body plethysmograph was used to measure ventilatory parameters (V´E, fR, VT) and FRC during air breathing and acute hypoxia (10 % O2 in N2). The exposure to hypoxia for three weeks increased FRC measured during air breathing in both experimental groups (H: 3.0±0.1 ml, H+CO2: 3.1±0.2 ml, C: 1.8±0.2 ml). During the following acute hypoxia, we observed a significant increase of FRC in the controls (3.2±0.2 ml) and in both experimental groups (H: 3.5±0.2 ml, H+CO2: 3.6±0.2 ml). Because chronic hypoxia combined with chronic hypercapnia and chronic poikilocapnic hypoxia induced the same increase of FRC, we conclude that hypercapnia did not participate in the FRC enlargement during chronic hypoxia., H. Maxová, M. Vízek., and Obsahuje bibliografii