Cesta k objevu a následnému zkoumání vlastností kosmického zářeni byla a je stejně klikatá jako dráhy nabitých částic tohoto záření v propastech vesmíru. Ohlédnutí za prehistorií i historií výzkumu kosmických paprsků by mohlo být podnětem k vyřešení záhad, které se ani po stoletém úsilí mnoha badatelů nepodařilo rozluštit., The path to the discovery and subsequent study of the properties of the rather mysterious cosmic rays was, and still is as tortuous as the trajectories of charged particles in the depths of the universe. Looking back to the prehistory and history of cosmic-ray research might therefore serve as a stimulus for deciphering the puzzles that resist to be solved in spite of a hundred-year effort by many brilliant scientists., Jiří Grygar., and Obsahuje seznam literatury
In 2017, 100 years elapsed since the introduction of the cosmological constant into the equations of general theory of relativity. In this paper we show which role the cosmological constant played in the beginning, what its status is today, and when it became a commonly accepted part of the physical description of reality as a suitable representative of the vacuum energy or, more generally, the so-called dark energy responsible for the current accelerated expansion of our universe. Finally, we discuss possible astrophysical manifestations of the cosmological constant., V roce 2017 uplynulo 100 let od zavedení kosmologické konstanty do rovnic obecné teorie relativity. V referátu ukazujeme, jakou roli hrála kosmologická konstanta na počátku a jaký je její status dnes, kdy se stala běžně přijímanou součástí fyzikálního popisu reality jako vhodný představitel energie vakua či obecně tzv. temné energie zodpovědné za současnou urychlovanou expanzi našeho vesmíru. Na závěr diskutujeme možné astrofyzikální projevy kosmologické konstanty., Petr Slaný, Zdeněk Stuchlík., and Obsahuje bibliografii
Two wheat {Triticum aestivum L.) cultivars, Trakia (drought-sensitive, DS) and Slavianka 196 (drought-tolerant, DT), were subjected to water stress induced by polyethyleneglycol (PEG) 6000; 15 % PEG for 6 h (mild stress); 25 % PEG for 6 h and 15 % PEG for 24 h (severe stress). Exposure of plants to water stress led to a noticeable decrease in both the initial slope of net photosynthetic rate to intercellular CO2 concentration {Pfilc^ curves and the maximum P-^. Ribulose 1,5-bisphosphate carboxylase (RuBPC) activity was almost unchanged under mild stress while under severe stress it was reduced by about 26-27 %. The ratio of variable to maximal chlorophyll fluorescence did not change which implied that there was little effect of examined stress conditions on the photosystem 2 electron transport. The relative magnitude of stomatal and nonstomatal factors in limitation of photosynthesis depended on stress severity.
In juvenile trees growing at the rainforest understory, light is the most limiting factor for growth. It has been assumed that stomata quickly respond to light irrespective of the physical conditions prevailing before leaf illumination. Nevertheless, so far this issue has not been addressed for saplings of Amazonian tree species. The aim of this study was to determine how stomatal conductance (gs) and photosynthetic parameters of Amazonian saplings respond to diurnal variation in the physical environment and to rainfall seasonality. Light-saturated net photosynthetic rate (PNmax) and gs at light saturation (gsmax) were measured in the dry (August) and rainy (January) season of 2008 in saplings of 10 Amazonian tree species (Minquartia guianensis, Myrcia paivae, Protium apiculatum, Guatteria olivacea, Unonopsis duckei, Rinorea guianensis, Dicypellium manausense, Eschweilera bracteosa, Gustavia elliptica, and Tapura amazonica). At the forest understory, variables of the physical environment were measured. Rainfall seasonality did not affect PNmax and gsmax, nor was the effect of species on PNmax and gsmax significant (p>0.05). The gs and PNmax increased as the forest understory became brighter and warmer; as a result, PNmax and gsmax were higher at midday than early in the morning or in the afternoon. However, contrary to expectations, neither changes in air vapor pressure deficit nor air CO2 concentration at the forest understory affected stomatal opening. More investigation is needed to elucidate the role of environmental factors in modulating stomatal movements in juvenile trees growing beneath the dense canopy of tropical rainforests., R. A. Marenco, H. C. S. Nascimento, N. S. Magalhães., and Obsahuje bibliografii