The aim was to study the blood-brain permeability according to the distribution in the rat brain of Evans blue (EB) and sodium fluorescein (NaFl) administered by an intracarotid injection. Eighteen animals were divided into six groups according to the state of the blood-brain barrier (BBB) at the moment when the dyes were being applied. In the first two groups, the BBB was intact, in groups 3 and 4 the barrier had been opened osmotically prior to the application of the dyes, and in groups 5 and 6 a cellular edema was induced by hyperhydration before administration of the dyes. The intracellular and extracellular distribution of the dyes was studied by fluorescence microscopy. The histological picture thus represented the morphological correlate of the way BBB permeability had been changed before the application of the dyes., P. Kozler, J. Pokorný., and Obsahuje bibliografii
b1_Essential hypertension is a multifactorial disorder which belongs to the main risk factors responsible for renal and cardiovascular complications. This review is focused on the experimental research of neural and vascular mechanisms involved in the high blood pressure control. The attention is paid to the abnormalities in the regulation of sympathetic nervous system activity and adrenoceptor alterations as well as the changes of membrane and intracellular processes in the vascular smooth muscle cells of spontaneously hypertensive rats. These abnormalities lead to increased vascular tone arising from altered regulation of calcium influx through L-VDCC channels, which has a crucial role for excitation-contraction coupling, as well as for so-called “calcium sensitization” mediated by the RhoA/Rho-kinase pathway. Regulation of both pathways is dependent on the complex interplay of various vasodilator and vasoconstrictor stimuli. Two major antagonistic players in th e regulation of blood pressure, i.e. sympathetic nervous system (by stimulation of adrenoceptors coupled to stimulatory and inhibitory G proteins) and nitric oxide (by cGMP signaling pathway), elicit their actions via the control of calcium influx through L-VDCC. However, L-type calcium current can also be regulated by the changes in membrane potential elicited by the activation of potassium channels, the impaired function of which was detected in hypertensive animals. The dominant role of enhanced calcium influx in the pathogenesis of high blood pressure of genetically hypertensive animals is confirmed not only by therapeutic efficacy of calcium antagonists but especially by the absence of hypertension in animals in which L-type calcium current was diminished by pertussis toxin-induced inactivation of inhibitory G proteins., b2_ there is considerable information on th e complex neural and vascular alterations in rats with established hypertension, the detailed description of their appearance during the induction of hypertension is still missing., M. Pintérová, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure., L. A. Shimoda, J. S. K. Sham, J. T. Sylvester., and Obsahuje bibliografii
On the basis of solid-state aluminium-27 nuclear magnetic resonance measurements a new organo-aluminium complex in coal substance was discovered in the solid extracts obtained both from the Ostrava-Karviná bituminous coal and the North Bohemian Basin brown coal. In the 27 Al MAS NMR spectra it was found that the significant chemical shift at 13.6-14.6 ppm corresponds with that obtained for the aluminium hexaphenoxide complex (14.2 ppm). Therefore, organo-aluminium complex with hexa-coordination to oxygen is present in coal substance., Pavel Straka., and Obsahuje bibliografické odkazy
Úvod: Alveolární echinokokóza je vzácné a závažné zoonotické parazitární onemocnění. Kazuistika: Autoři demonstrují případ mladého nemocného s postižením jater, bránice a plic touto formou infekce. Diagnóza echinokokové infekce byla stanovena na základě anamnézy, klinické symptomatologie v kombinaci s USG, CT, MRI a sérologickými metodami. Byla provedena radikální bloková resekce 7. jaterního segmentu, dolního plicního laloku vpravo a bránice. Definitivní stanovení diagnózy alveolární echinokokózy bylo provedeno histopatologicky a pomocí PCR metody ze vzorku resekované tkáně. Závěr: Nemocný je 8 měsíců po operaci bez potíž, trvale dispenzarizován s long-life terapií albendazolem., Introduction: Alveolar echinococcosis is a life-threatening zoonotic parasitic disease. Its incidence is rare. In some cases, the correct and timely diagnosis can be difficult. Case report: The authors present the case of a young patient with liver, diaphragm and lung involvement. The suspicion of echinococcus infection was made on the basis of medical history, clinical symptoms, and a combination of ultrasonography, computed tomography, magnetic resonance imaging tests and serological methods. The patient underwent multimodal treatment with albendazole and en-bloc resection of the liver, lung and diaphragm. The definitive diagnosis of alveolar echinococcosis was determined from samples of the resected tissues using histopathology and polymerase chain reaction methods. The patient has been followed regularly and is on life-long treatment with albendazole. Conclusion: The precise diagnosis and multimodal therapy of alveolar echinococcosis is fundamental from the point of view of patient long-term survival., and V. Třeška, L. Kolářová, H. Mírka, O. Daum, J. Matějů, V. Liška, A. Koubová, D. Sedláček