a1_V první části této rozsáhlé studie, která vyšla v minulém dvojčísle Soudobých dějin (roč. 22, č. 1-2/2015, s. 9-29), autor sledoval, jak se poučení z chyb appeasementu, spojovaného s uzavřením Mnichovské dohody na podzim 1938, promítalo v americké zahraniční politice během druhé světové války a na počátku války studené. Ve druhé části na základě poznatků z publikovaných i nepublikovaných amerických pramenů zkoumá vliv daného faktoru na postup Spojených států v korejské válce na počátku padesátých let. Ukazuje, že rozhodnutí Trumanovy administrativy podstatně zasáhnout do tohoto konfliktu bylo přímým důsledkem odmítavého postoje k politice usmiřování agresora, který v té době sdílela v USA politická veřejnost bez ohledu na stranickou příslušnost a politické sympatie. Argumenty založené na odmítání appeasementu však záhy začali využívat republikáni jako munici v předvolebním boji proti vládnoucím demokratům a staly se také předmětem sporu v souvislosti s volbou strategie na korejském bojišti po vstupu čínských jednotek do války. Zatímco Bílý dům se chtěl vyhnout neomezenému konfliktu s Čínou, vrchní velitel vojsk OSN v Koreji generál Douglas MacArthur (1880-1964) zastával nekompromisní postup a fakticky přestal respektovat prezidentovu autoritu. Po svém odvolání z funkce se stal hlavním kritikem Trumanovy politiky a hrdinou republikánské opozice, která na jaře 1951 prosadila slyšení k okolnostem jeho suspendování před zvláštním výborem Senátu., a2_Autor podrobně přibližuje tento mimořádný vnitropolitický střet v poválečných amerických dějinách, který se měl stát triumfem MacArthurovy obžaloby, ale postupně se změnil v její debakl, mimo jiné v důsledku přesvědčivých vystoupení ministrů zahraničí a obrany Deana Achesona (1893-1971) a George C. Marshalla (1880-1959). V závěru autor ukazuje, jak se k „poučení z Mnichova“ vraceli další američtí prezidenti, a konstatuje, že se stalo trvajícím politickým odkazem Harryho S. Trumana (1884-1972) a jako takové pevně zakořenilo v americkém politickém diskurzu., b1_In Part 1 of this article, published in the last issue of Soudobé dějiny (vol. 22, 2015, nos. 1-2, pp. 9-29), the author discusses how the lessons from the mistakes of appeasement, including the signing of the Munich Agreement in autumn 1938, were projected in US foreign policy during the Second World War and at the beginning of the Cold War. In Part 2, based on published and unpublished American sources, he considers the influence of this factor on the US approach taken in the Korean War in the early 1950s. He seeks to demonstrate that the decision of the Truman Administration to substantially intervene in this conflict was a direct consequence of the negative attitude to the policy of appeasing an aggressor. This attitude was also shared by the American public, regardless of party affiliation and political sympathies. Arguments based on the rejection of appeasement, however, soon began to be used by the Republicans as ammunition in the election campaign against the incumbent Democrats and the choice of strategy also became a matter of dispute in the choice of strategy on the Korean battlefield after China entered the war. Whereas the White House wished to avoid an unlimited conflict with China, the Commander-in-Chief of the United Nation Command in Korea, General Douglas MacArthur (1880-1964), was in favour of an uncompromising approach and in fact ceased to obey President Harry S. Truman (1884-1972). After being relieved of his command by Truman, MacArthur became the chief critic of his policies and a hero of Truman’s Republican opponents. In spring 1951, the Republicans organized a special Senate committee hearing on the circumstances of MacArthur’s suspension., b2_The author looks in detail at this exceptional clash in post-war US domestic politics, which was meant to be triumphantly used against MacArthur, but gradually changed into a debacle in consequence of, among other things, the compelling testimonies of Secretary of State Dean Acheson (1893-1971) and Secretary of Defense George C. Marshall (1880-1959). In his conclusion, the author seeks to demonstrate how other US presidents returned to the ‘lessons of Munich’, and he argues that these lessons became Truman’s lasting political legacy and as such became firmly rooted in American political discourse., and Petr Mareš.
Americký diplomat Paul Hacker podle recenzenta významně přispěl k dosud nepočetným diplomatickým memoárům o Československu po pádu komunistického režimu (původní vydání: Slovakia on the Road to Independence: An American Diplomat’s Eyewitness Account. University Park, Pennsylvania State University Press 2010). Hacker od podzimu 1990 do konce roku 1992 vedl nově zřízený americký generální konzulát v Bratislavě, který se poté se vznikem Slovenské republiky stal velvyslanectvím. Jeho vzpomínky pojednávají zejména o Slovensku v posledních letech československé federace, o jeho cestě k samostatnosti a prvních krocích jako suverénního státu. Události přitom nahlíží ze slovenské perspektivy, zatímco pohled český či československý téměř absentuje. Recenzent komentuje například jeho líčení dělení společného státu, odstíněný portrét slovenského premiéra Vladimíra Mečiara nebo aféru s objevenými odposlechy na bratislavském generálním konzulátu., The book under review is a Slovak translation of Paul Hacker´s Slovakia on the road to independence: An American diplomat´s eyewitness account (University Park: Pennsylvania State University Press, 2010). With this book, Hacker has made an important contribution to the small number of memoirs by diplomats which discuss Czechoslovakia after the collapse of the Communist regime. Hacker, from autumn 1990 to late 1992, was in charge of the newly established US consulate in Bratislava, and, after the creation of the Slovak Republic, became the US ambassador to that country. His memoirs discuss Slovakia particularly in the last years of the Czechoslovak federation, its road to independence, and its first steps as a sovereign state. He looks at events from the Slovak perspective, almost completely ignoring the Czech and Czechoslovak. The reviewer notes, for example, Hacker´s depiction of the division of the federation, his sketch of the Slovak premier, Vladimír Mečiar (b. 1942), and the affair over the discovery of the wiretapping of the US consulate general in Bratislava., [autor recenze] Tomáš Zahradníček., and Obsahuje bibliografii a bibliografické odkazy
This paper provides a method for indexing and retrieving Arabic texts, based on natural language processing. Our approach exploits the notion of template in word stemming and replaces the words by their stems. This technique has proven to be effective since it has returned significant relevant retrieval results by decreasing silence during the retrieval phase. Series of experiments have been conducted to test the performance of the proposed algorithm ESAIR (Enhanced Stemmer for Arabic Information Retrieval). The results obtained indicate that the algorithm extracts the exact root with an accuracy rate up to 96% and hence, improving information retrieval.
Automatic detection and classification of cardiac arrhythmias with high accuracy and by using as little information as possible is highly useful in Holter monitoring of the high risk patients and in telemedicine applications where the amount of information which must be transmitted is an important issue. To this end, we have used an adaptive-learning-rate neural network for automatic classification of four types of cardiac arrhythmia. In doing so, we have employed a mix of linear, nonlinear, and chaotic features of the R-R interval signal to significantly reduce the required information needed for analysis, and substantially improve the accuracy, as compared to existing systems (both ECG-based and R-R interval-based). For normal sinus rhythm (NSR), premature ventricular contraction (PVC), ventricular fibrillation (VF), and atrial fibrillation (AF), the discrimination accuracies of 99.59%, 99.32%, 99.73%, and 98.69% were obtained, respectively on the MIT-BIH database, which are superior to all existing classifiers.
It is well known that a large neighborhood interior point algorithm for linear optimization performs much better in implementation than its small neighborhood counterparts. One of the key elements of interior point algorithms is how to update the barrier parameter. The main goal of this paper is to introduce an "adaptive'' long step interior-point algorithm in a large neighborhood of central path using the classical logarithmic barrier function having O(nlog(x0)Ts0ϵ) iteration complexity analogous to the classical long step algorithms. Preliminary encouraging numerical results are reported.
As an improved algorithm of standard extreme learning machine, online sequential extreme learning machine achieves excellent classification and regression performance. However, online sequential extreme learning machine gives the same weight to the old and new training samples, and fails to highlight the importance of the new training samples. At the same time, the algorithm updates the network weights after obtaining the new training samples. This network weight updating mode lacks flexibility and increases unnecessary computation. This paper proposes an adaptive online sequential extreme learning machine with an effective sample updating mechanism. The new and old samples are given different weights. The effect of new training samples on the algorithm is further enhanced, which can further improve the regression prediction ability of extreme learning machine. At the same time, an improved artificial bee colony algorithm is proposed and used to optimize the parameters of the adaptive online sequential extreme learning machine. The stability and convergence property of proposed prediction method are proved. The actual collected short-term wind speed time series is used as the research object and verify the prediction performance of the proposed method. Multi step prediction simulation of short-term wind speed is performed out. Compared with other prediction methods, the simulation results show that the proposed approach has higher prediction accuracy and reliability performance, meanwhile improve the performance indicators.
The artificial Immune Recognition System (AIRS) algorithm inspired by a natural immune system makes use of the training data to generate memory cells (or prototypes). These memory cells are used in the test phase to classify unseen data using the K-nearest neighbor (K-NN) algorithm. The performance of the AIRS algorithm, similar to other distance-based classifiers, is highly dependent on the distance function used to classify a test instance. In this paper, we present a new version of the AIRS algorithm named Adaptive Distance AIRS (AD-AIRS) that uses an adaptive distance metric to improve the generalization accuracy of the basic AIRS algorithm. The adaptive distance metric is based on assigning weights to the evolved memory cells. The weights of memory cells are used in the test phase to classify test instances. Apart from this, the AD-AIRS algorithm uses the concept of clustering to modify the way that memory cells are generated. Each memory cell represents a group of similar instances (or antigens). A subset of the UCI datasets is used to evaluate the effectiveness of the proposed AD-AIRS algorithm in comparison with the basic AIRS. Experimental results show that the AD-AIRS achieves higher accuracy with a fewer number of memory cells when compared with the basic AIRS algorithm.
Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributions. Bayes estimator of a lower-bounded scale parameter, under the squared-log error loss function with a sequence of boundary supported priors is obtained. An admissible estimator of a lower-bounded scale parameter, which is the limiting Bayes estimator, is given. Also another class of estimators of a lower-bounded scale parameter, which is called the truncated linear estimators, is considered and several interesting properties of the estimators in this class are studied. Some comparisons of the estimators in this class with an admissible estimator of a lower-bounded scale parameter are presented.