A new chamber was developed for a simultaneous measurement of fluorescence kinetics and oxygen exchange in filamentous and thallous algae as well as in small leaves of water plants. Algal filaments or thalli are kept by a stainless grid close to the bottom window of the chamber in the sample compartment. The grid separates the object from the electrode compartment with the oxygen electrode at the top. This compartment accommodates, in addition, a magnetic stirrer that provides efficient circulation of the medium between the sample and the electrode. This magnetic bar spins on a fixed axis and is driven by an electronically commutated magnetic field produced by four coils which are arranged around the chamber. This design yields a very favourable signal to noise ratio in the oxygen electrode records. Consequently, measurements can be performed even of algae with very low photosynthetic rates such as marine low-light red algae or algae under severe stress. For irradiation of the samples and for fluorescence measurements a fibre optic light guide is used facing the window of the chamber. The four branches of a commercially available light guide serve the following purposes: collection of sample fluorescence and supply of measuring, actinic, and saturating light, respectively. and H. Küpper, I. Šetlík, M. Hlásek.
Cuttings of Populus cathayana Rehd, originating from three triploid and one diploid populations with the same parents but different gamete origins, were used to examine physiological responses to drought stress and rewatering by exposure to three progressive water regimes. Progressive drought stress significantly decreased the leaf relative water content (RWC), photosynthesis, and chlorophyll fluorescence parameters, and increased the relative electrolyte leakage, malondialdehyde (MDA), free proline (Pro), and antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, in the four populations evaluated. However, compared to the diploid population, triploid populations showed lower relative electrolyte leakage and MDA, higher RWC and Pro content, and more efficient photosynthesis and antioxidant systems under the same water regime. Our data indicated that triploid populations possessed more efficient protective mechanisms than that of diploid population with gradually increasing drought stress. Moreover, some triploid genotypes were less tolerant to water stress than that of diploids due to large intrapopulation overlap., T. Liao, Y. Wang, C. P. Xu, Y. Li, X. Y. Kang., and Obsahuje bibliografii
Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3-, and H2PO4-) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4+ production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress., H. Wang, X. Lin, S. Cao, Z. Wu., and Obsahuje bibliografii
Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol-1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3., L. Zhang, L. L. Jia, J. X. Sui, M. X. Wen, Y. J. Chen., and Obsahuje bibliografii
We studied the dominant environmental factors that affect the
gas-exchange characteristics and water potential (ψ) of broad-ovate leaves of Populus euphratica Oliv. in extreme arid area of Tarim River, China, and their correlation to water status of P. euphratica by analyzing on-field monitored meteorological data, soil moisture and salinity, P. euphratica leaf gas exchange and ψ, and revealed the indicative threshold of environmental factors for P. euphratica leaf water changes and growth. The results indicated that meteorological factors such as air relative humidity (RH), air temperature (T air), etc. are the dominant factors. The threshold value of RH is (48.19 ± 1.06)% for P. euphratica growth, i.e. RH from 10.69% to 48.19% is suitable for P. euphratica growth in extremely arid region of Tarim River. This study provides a theoretical basis for reducing drought damage to P. euphratica and maintaining normal growth of P. euphratica by in-time watering. and A. H. Fu ... [et al.].
Anthocyanins and nonphotochemical quenching (NPQ) are two important tools that provide photoprotection in plant leaves. In order to understand how plants use these tools for acclimation to changing seasonal conditions, we investigated pigments, antioxidative capacity, and photosynthesis in leaves of an evergreen tree (Acmena acuminatissima) in two contrasting seasons. Young leaves of A. acuminatissima appeared in distinct colors, being light green in summer and red in winter due to the presence of anthocyanins. In the winter young leaves, anthocyanins contributed less than 2% to the antioxidant pool. In the summer, young leaves had higher NPQ than that of mature leaves, but in the winter, they did not derive any NPQ-related advantage over mature leaves. These results suggest that the accumulation of anthocyanins in young leaves in the winter may compensate for the insufficient photoprotection afforded by NPQ and that anthocyanins function as a light attenuator to protect the photochemical apparatus against excess light., H. Zhu, T.-J. Zhang, J. Zheng, X.-D. Huang, Z.-C. Yu, C.-L. Peng, W. S. Chow., and Obsahuje bibliografické odkazy
In this study, we hypothesized that colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis could modify the profiles of rhizosphere microbial communities with subsequent effects on nutrient uptake that directly affects olive tree physiology and performance. In this context, a greenhouse experiment was carried out in order to study the effects of mycorrhizal colonization by R. irregularis on photosynthesis, pigment content, carbohydrate profile, and nutrient uptake in olive tree. After six months of growth, photosynthetic rate in mycorrhizal (M) plants was significantly higher than that of nonmycorrhizal plants. A sugar content analysis showed enhanced concentrations of mannitol, fructose, sucrose, raffinose, and trehalose in M roots. We also observed a significant increase in P, K, Ca, Mg, Zn, Fe, and Mn contents in leaves of the M plants. These results are important, since nutrient deficiency often occurs in Mediterranean semiarid ecosystems, where olive trees occupy a major place., M. Tekaya, B. Mechri, N. Mbarki, H. Cheheb, M. Hammami, F. Attia., and Obsahuje bibliografii
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (PN) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar
gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species., A. M. Feistler, G. Habermann., and Obsahuje bibliografii
Waterlogging is one of the critical factors controlling the distribution, regeneration, and survival of vegetation in wetlands. Here, we tested the hypothesis that Mitragyna parvifolia (Roxb.) Korth. and Syzygium cumini Keels, inhabiting the Keoladeo National Park, a Ramsar wetland (Bharatpur, India), are tolerant to waterlogging. The morphological and photosynthetic variables of four-month-old seedlings subjected to waterlogging, along with the concentrations of macroand micronutrients, were examined. After 35 days, treatment was halted due to high mortality of S. cumini seedlings in contrast to that of M. parvifolia seedlings. Significant declines in most of the studied variables were observed in both species when compared with their respective controls. In addition, M. parvifolia seedlings developed adventitious roots and lenticels and showed an increased root biomass. Based on the results, we concluded that adaptive traits displayed by M. parvifolia seedlings facilitate its tolerance to waterlogging in contrast to S. cumini seedlings., A. Bidalia, Z. Okram, M. Hanief, K. S. Rao., and Obsahuje bibliografii
Benzoxazolin-2-(3H)-one (BOA) has been tested in many plants species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO2 concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO2 into substomatal spaces, thus limiting CO2 assimilation. No change found in intercellular CO2 concentration and reduced effective quantum yield of PSII photochemistry revealed that CO2 was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings. and Obsahuje bibliografii