Clonal growth is of great importance for survival, growth, expansion, and resource utilization of some species. Knowing how clonal plants respond morphologically and physiologically to different light environments can be useful to explain their occurrence and abundance patterns under specific environmental conditions. Responses of clonal growth, leaf gas exchange, fluorescence emission, and photosynthetic pigment concentrations to different light environments (100, 60, 30, and 15%) were studied in Amomum villosum, grown in the traditional way for economic purpose in Xishuangbanna, southwest China. The results showed that A. villosum attained vigorous clonal growth under 30% and 60% light, with a higher plant height, number of ramets, stolon length, thicker stems and stolons. Shade-grown A. villosum possessed a larger leaf area than that of the sun-grown plants in order to capture more light. For A. villosum, the higher
light-saturated net photosynthetic rate, light-saturation point, larger fresh and dry biomass can explained the better clonal growth for A. villosum under 30% and 60% light. Amomum villosum attained the highest values of minimal chlorophyll fluorescence under 100% light and the lowest values of maximum photochemical efficiency of PSII under 15% light. Our findings indicated that the full irradiance was too strong and 15% light was too weak for A. villosum plants. It was also verified by higher concentrations of photosynthetic pigments in the shaded plants compared to those grown under full sun light. Our results suggested that A. villosum seemed to be adapted to moderate light environment (60-30%) which was indicated by vigorous clonal growth and higher photosynthesis. This information is very useful to select clonal species for rainforest or understory projects. The cultivation of A. villosum in rainforest should not be done under too strong (100%) or too weak light environment (less than 15%)., Y. H. Guo, C. Yuan, L. Tang, J. M. Peng, K. L. Zhang, G. Li, X. J. Ma., and Seznam literatury
Morphology, biomass accumulation and allocation, gas exchange, and chlorophyll fluorescence were compared for one-year-old seedlings of Salix psammophila and Artemisia ordosica, two dominant desert species, in response to two water supplies (equivalent to 315.0 mm for present precipitation in growing season and to 157.5 mm for future decreasing precipitation) during 105 d. For both species, photochemical efficiency of photosystem 2 (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance, biomass accumulation in different organs, tree height, number of leaves, and leaf area were reduced in response to the decrease in water supply. For both species, instantaneous water use efficiency was not affected by the water deficit. However, diurnal patterns of gas exchange and biomass allocation were affected in different ways for the two species, with notably a decrease in specific leaf area and an increase in root : shoot ratio for S. psammophila only. Overall, S. psammophila was more responsive to the decreasing precipitation than A. ordosica. and C. W. Xiao ... [et al.].
A sand-culture experiment was conducted in open-top chambers which were constructed in a greenhouse to investigate the responses of salt-stressed wheat (Triticum aestivum L.) to O3. Plant seeding of JN17 (a popular winter wheat cultivar) was grown in saltless (-S) and saline (+S, 100 mM NaCl) conditions combined with charcoal-filtered air (CF, < 5 ppb O3) and elevated O3 (+O3,
80 ± 5 ppb, 8 h day-1) for 30 d. O3 significantly reduced net photosynthetic rate (PN), stomatal conductance, chlorophyll contents and plant biomass in -S treatment, but no considerable differences were noted in those parameters between +O3+S and CF+S treatments. O3-induced loss in cellular membrane integrity was significant in -S plants, but not in +S plants evidenced by significant elevations being measured in electrolyte leakage (EL) and malondialdehyde (MDA) content in -S plants, but not in +S plants. Both O3 and salinity increased proline content and stimulated antioxidant enzymes activities. Soluble protein increased by salinity but decreased by O3. Abscisic acid (ABA) was significantly elevated by O3 in -S plants but not in +S plants. The results of this study suggested that the specificity of different agricultural environments should be considered in order to develop reliable prediction models on O3 damage to wheat plants. and Y. H. Zheng ... [et al.].
The widespread Mediterranean Pinus pinea showed exceptionally low genetic diversity and low differentiation between traits in the adult phase. We explored the adaptation potential of seedlings from four main Iberian provenances during their regeneration phase. We assessed the variability of shoot growth, allometry, physiological traits, and phenotypic plasticity to the interactive effect of light and water environments during 8-month moderate water-stress cycle and after one-week heat wave. The effect of shade and drought was mainly orthogonal whatever the provenance. The inland La Mancha provenance showed higher shoot growth and biomass compared to the southern coastal Depresión-del-Guadalquivir provenance. Following the heat wave, La Mancha presented higher net photosynthetic rates, a lower decrease in maximal quantum efficiency of PSII, and a higher accumulated relative height growth, thus, showing an adaptive advantage. The observed differences corroborated the ecological grouping of the provenances along latitudinal and inland-coastal gradients. We confirmed the high adaptive plasticity of Pinus pinea to the unpredictable Mediterranean environment., M. Pardos, R. Calama., and Obsahuje bibliografii
Five-year-old plants of two olive cultivars (Frantoio and Moraiolo) grown in large pots were exposed for 7 to 8 months to ambient (AC) or elevated (EC) CO2 concentration in a free-air CO2 enrichment (FACE) facility. Exposure to EC enhanced net photosynthetic rate (PN) and decreased stomatal conductance, leading to greater instantaneous transpiration efficiency. Stomata density also decreased under EC, while the ratio of intercellular (Ci) to atmospheric CO2 concentration and chlorophyll content did not differ, except for the cv. Moraiolo after seven months of exposure to EC. Analysis of the relationship between photosynthesis and Ci indicated no significant change in carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase after five months of exposure to EC. Based on estimates derived from the PN-Ci relationship, there were no apparent treatment differences in daytime respiration, CO2 compensation concentration, CO2-saturated photosynthetic rate, or photosynthetic rate at the mean Ci, but there was a reduction in stomata limitation to PN at EC. Thus 5-year-old olive trees did not exhibit down regulation of leaf-level photosynthesis in their response to EC, though some indication of adjustment was evident for the cv. Frantoio with respect to the cv. Moraiolo. and R. Tognetti ... [et al.].
Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (PN) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil. and A. Pavlovič ... [et al.].
The effects of selenium on photosynthesis and Chl fluorescence in pear, grape, and peach were analyzed. The foliar spray of amino acid-chelated selenium solution was performed soon after fruit setting, totally six times, with an interval of ten days. After seven days from the last spray, the leaves in the middle of shoots were examined. Foliar spray of selenium increased the net photosynthetic rate in pear, grape, and peach. In contrast, the treatment decreased stomatal conductance, transpiration rate, and substomatal CO2 concentration in all the three species. The selenium treatment improved the maximum quantum yield of PSII, effective quantum yield of PSII, and photochemical quenching in all three species. Conversely, the selenium treatment reduced nonphotochemical quenching in all three species. We suggested that selenium can improve photosynthesis and protect PSII in fruit crops., T. Feng, S. S. Chen, D. Q. Gao, G. Q. Liu, H. X. Bai, A. Li, L. X. Peng, Z. Y. Ren., and Obsahuje seznam literatury
Cuttings of Populus cathayana were exposed to three different alkaline regimes (0, 75, and 150 mM Na2CO3) in a semicontrolled environment. The net photosynthesis rate (PN), mesophyll conductance (gm), the relative limitations posed by stomatal conductance (Ls) and by mesophyll conductance (Lm), photosynthetic nitrogen-use efficiency (PNUE), carbon isotope composition (δ13C), as well as specific leaf area (SLA) were measured. PN decreased due to alkaline stress by an average of 25% and gm decreased by an average of 57%. Alkaline stress caused an increase of Lm but not Ls, with average Ls of 26%, and Lm average of 38% under stress conditions. Our results suggested reduced assimilation rate under alkaline stress through decreased mesophyll conductance in P. cathayana. Moreover, alkaline stress increased significantly δ13C and it drew down CO2 concentration from the substomatal cavities to the sites of carboxylation (Ci-Cc), but decreased PNUE. Furthermore, a relationship was found between PNUE and Ci-Cc. Meanwhile, no correlation was found between δ13C and Ci/Ca, but a strong correlation was proved between δ13C and Cc/Ca, indicating that mesophyll conductance was also influencing the 13C/12C ratio of leaf under alkaline stress. and G. Xu ... [et al.].
A field trial was conducted to determine the effect of nitrogen-enriched biochar on soil water content, plant’s photosynthetic parameters, and grain yield of spring wheat at the Dingxi Experimental Station during the 2014 and 2015 cropping seasons. Results showed that biochar applied with nitrogen fertilizer at a rate of 50 kg ha-1 of N (BN50) increased soil water content in the 0-30 cm depth range by approximately 40, 32, and 53% on average at anthesis, milking, and maturity, respectively, compared with
zero-amendment (CN0). Stomatal conductance and net photosynthetic rate after the BN50 treatment increased by approximately 40 to 50% compared to CN0. Soil water content and photosynthetic traits also increased in other treatments using straw plus nitrogen fertilizer, but to lesser extent than that of BN50. Grain yields were highest (1905 and 2133 kg ha-1 in 2014 and 2015, respectively) under BN50. From this, biochar appears to have a potential for its use with N-fertilizer as a cost-effective amendment for crop production in semiarid environments., S. Yeboah, R. Zhang, L. Cai, L. Li, J. Xie, Z. Luo, J. Wu, D. L. Antille., and Obsahuje bibliografii
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (gs), net photosynthetic rate (PN), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of PN in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low gs values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment., J.-S. Hwang, Y.-S. Choo., and Obsahuje bibliografii