Survival and Lt50 after exposures at constant low temperature were compared to the values obtained at alternating temperatures in two active (summer acclimated) temperate terrestrial arthropods. The experimental regimes used interruptions - daily transfers from the lower temperature to various higher temperatures for two hours or to one high temperature for Various durations. In both species the alternating conditions improved survival, implying reparation of the chill injury. In the collembolan Orchesella cincta, there was a maximum Lt50 when the higher exposure temperature was equal to the temperature of rearing (19°C). In the bug Pyrrhocoris apterus, Lt50 increased strongly with increasing higher temperature from 0 to 15°C, and was subsequently constant over the entire physiological range suitable for development (to 35°C). Exposure at 0°C was harmful if continuously applied, but survival increased, relative to a constant exposure at -5°C, if the temperature alternated between -5 and 0°C., Zdeněk Hanč, Oldřich Nedvěd, and Lit
Cold hardiness of larvae of the summer fruit tortrix moth, Adoxophyes orana (Fischer von Rosslerstamm) (Lepidoptera: Tortricidae) was examined in the laboratory. Supercooling point of field collected larvae increased significantly from a mean value of -23.9°C in February 1998 to -16.9°C in June 1998. Mean supercooling points for laboratory diapause and non-diapause larvae were -20.7°C and -17.2°C respectively. Short period of acclimation (10 days at 0°C) significantly decreased supercooling point to -24.7°C for laboratory diapause larvae. Acclimation for 12 days at 5°C decreased supercooling point to -19.4°C for non-diapause larvae. Pre-freeze mortality for diapause and non-diapause larvae was also studied. Constant exposure of diapause larvae at -5°C resulted in high mortality (63.1%) after a period of 30 days. in contrast, only 6 days at -5°C were sufficient to cause 100% mortality of non-diapause larvae. Mortality of non-diapause larvae reached 100% after 12 and 18 days at 0 and 5°C respectively. The importance of these findings for the overwintering strategy of A. orana is discussed., Panagiotis G. Milonas, Mathilde Savopoulou-Soultani, and Lit
We investigated the physiological adaptations for winter survival in a freeze-intolerant chrysomelid, Aulacophora nigripennis, in warm-temperate regions. The adults showed a decreased supercooling point (SCP), increased chill tolerance and high myo-inositol content during winter. Chill tolerance at 0°C appears to be a more suitable indicator of their cold hardiness than SCP because they die at 0°C without freezing and normally an not exposed to subzero temperatures below their SCP., Masahiko Watanabe, Kazuhiro Tanaka, and Lit
Mean development rates under cycling temperature regimes (both alternating and sinusoidal regimes) have been found to be either accelerated, decelerated or unaffected when compared to development at constant temperature regimes with equivalent means. It is generally accepted that this phenomenon is a consequence of the non-linearity inherent in the temperature-rate relationship of insect development and is known as the rate summation, or Kaufmann, effect. Some researchers invoke an additional physiological mechanism or specific adaptation to cycling temperatures resulting in a genuine alteration of development rate. Differences in development rates at constant and cycling temperatures may have important implications for degree-day (linear) population models, which are used in bath pest management and ecological studies.
Larvae of Aglais urticae L. (small tortoiseshell), Inachis io L. (peacock), Polygonia c-album L. (comma) and Vanessa atalanta L. (red admiral) (Lepidoptera: Nymphalidae) were reared at constant (10, 15, 20, 25, 30°C) and alternating (20/10, 25/15, 30/10, 30/20°C) regimes. Development rates under the alternating regimes used were found to differ from those under equivalent constant temperatures in a pattern suggestive of the Kaufmann effect: in all species development at 20/10°C was faster than at 15°C, and for three species development at 30/20°C was slower than at 25°C. The exception was A. urticae. A similar pattern was found for growth rate and pupal weight. The results are discussed with respect to cycling temperature theory and degree-day modelling., Simon R. Bryant, Jeffrey S. Bale, Chris D. Thomas, and Lit
We investigated the effects of genetic differences and host plant density on population development of the rose-grain aphid Sitobion avenae (F.) (Sternorrhyncha: Aphididae) in winter wheat stands. Aphid numbers on ears were recorded on 11 cultivars (6 years) and on plots where crop density was varied by thinning (12 years). Crop density significantly affected whole plant, tiller and ear mass, number of tillers, and leaf area and chlorophyll content. The duration and rate of aphid population growth, and the maximum numbers of aphids were ascertained by weekly counts. Maximum abundances increased with the length of time available for the growth of aphid populations while the rate of population growth was less important. Variation of maximum numbers of S. avenae on different cultivars was not significant, probably due to the small variation in the period available for the development of aphid populations. By contrast, there was a significant Variation of aphid performance associated with host plant density. Aphid populations on solitary plants persisted longer and became more abundant than in dense stands. The prolonged survival of aphid populations was probably caused by an extended period of tillering and lower average age of tillers of solitary plants. There was large annual variation in aphid abundance. It is likely that modifications of host plant development caused by differences in winter weather may contribute to this variation., Alois Honěk, Zdenka Martinková, and Lit
Most studies of responses of insects to elevated carbon dioxide have been made using short-term exposures to treated food plants and have involved measurements of responses in growth, reproduction, food consumption and efficiencies of conversion at specific stages in the life cycle. These will be reviewed in the light of longer-term studies recently published where whole generations have been reared in chambers with simultaneous treatment of plants and where insects have been free to select their food and microenvironment. Factors such as seasonal change in plants, choice of food plant, mode of feeding, timing of exposure, temperature, the role of natural enemies are considered and the whole placed in the context of other aspects of climate change.
It is concluded that in studies to date, the only feeding guild in which some species have shown increases in population density in elevated carbon dioxide are the phloem feeders. Chewing insects (both free-living,and mining) generally have shown no change or reduction in abundance, though relative abundance may be greatly affected. Compensatory feeding is common in these groups., John B. Whittaker, and Lit
Insect cold tolerance mechanisms are often divided into freezing tolerance and freeze intolerance. This division has been criticised in recent years; Bale (1996) established five categories of cold tolerance. In Bale's view, freezing tolerance is at the extreme end of the spectrum of cold tolerance, and represents insects which are most able to survive low temperatures. Data in the literature from 53 species of freezing tolerant insects suggest that the freezing tolerance strategies of these species are divisible into four groups according to supercooling point (SCP) and lower lethal temperature (LLT): (1) Partially Freezing Tolerant-species that survive a small proportion of their body water converted into ice, (2) Moderately Freezing Tolerant-species die less than ten degrees below their SCP, (3) Strongly Freezing Tolerant-insects with LLTs 20 degrees or more below their SCP, and (4) Freezing Tolerant Species with Low Supercooling Points which freeze at very low temperatures, and can survive a few degrees below their SCP. The last 3 groups can survive the conversion of body water into ice to an equilibrium at sub-lethal environmental temperatures. Statistical analyses of these groups are presented in this paper. However, the data set is small and biased, and there are many other aspects of freezing tolerance, for example proportion of body water frozen, and site of ice nucleation, so these categories may have to be revised in the future. It is concluded that freezing tolerance is not part of Bale's (1996) continuum, but rather a parallel, alternative strategy of cold tolerance., Brent J. Sinclair, and Lit
Climate features that influence life cycles, notably severity, seasonality, unpredictability and variability, are summarized for different polar zones. The zones differ widely in these factors and how they are combined. For example, seasonality is markedly reduced by oceanic influences in the Subantarctic. Information about the life cycles of Arctic and Antarctic arthropods is reviewed to assess the relative contributions of flexibility and programming to life cycles in polar regions. A wide range of life cycles occurs in polar arthropods and, when whole life cycles are considered, fixed or programmed elements are well represented, in contrast to some recent opinions that emphasize the prevalence of flexible or opportunistic responses. Programmed responses ale especially common for controlling the appearance of stages that are sensitive to adverse conditions, such as the reproductive adult. The relative contribution of flexibility and programming to different life cycles is correlated with taxonomic affinity (which establishes the general lifecycle framework for a species), and with climatic zone, the habitats of immature and adult stages, and food., Hugh V. Danks, and Lit
First stadium juveniles of P. angustus were reared under controlled seasonal conditions to maturity, reproduction and death. Individuals born in any one breeding season either had a 1-year or a 2-year life cycle (cohort-splitting). The life cycle was annual for individuals born in the first part of the breeding season (May-August), but became biennial for those born later (August-October). Two phenomena were involved: (1) Only individuals reaching the penultimate stadium (stadium VII) before a critical period at the end of spring could become adult in the breeding season following that of their birth. After this time, stadium VII individuals entered into aestivation and only became adult in the second autumn after their birth. (2) Females becoming adult in autumn entered reproductive dormancy and only laid eggs in the following spring. Overall, individuals born at the start of the breeding season easily reached stadium VII before the critical period and were able to breed at I year, whereas individuals born at the end of the breeding season reached stadium VII after the critical period, then had two consecutive periods of dormancy and only bred at 2 years age. Individuals from the same nest born in the middle of the breeding season (August) could have either annual or biennial life cycles, depending on whether they reached stadium VII before or during aestivation. The environmental factors capable of triggering aestivation in subadults and reproductive dormancy in autumn-maturing females are discussed., Jean-Francois David, Marie-Louise Celerier, Jean-Jacques Geoffroy, and Lit
There is much current discussion about the factors that control the distribution and abundance of animal species, particularly at the edges of their range. The significance of temperature for survival and development is compared in two closely related psyllid species (Craspedolepta nebulosa and C. subpunctata) living on the same host plant (Chamerion angustifolium) (Onagraceae) but displaying different distributions along latitudinal and altitudinal gradients. The following measurements were made at critical periods during the life cycle (a) winter supercooling points (SCPs), (b) tolerance of short (1 min) and long term (1-25) days exposure to sub-zero temperatures above the SCP, (c) tolerance of short term exposure to high spring/summer temperatures and (d) comparative field development rates among species and sites during the early critical part of the growing season. Successful completion of the life cycle is related to heat availability during the growing season. This appears to limit the distribution of the Craspedolepta species, rather than their survival response to thermal extremes. No significant differences were found between the two species in the supercooling point or in their long and short term survival responses at low or high temperatures., Jeremy M. Bird, Ian D. Hodkinson, and Lit