Photosynthetic and transpiration (E) rates, stomatal conductance, and leaf nitrogen content were surveyed for Myrica gale var. tomentosa, a N2-fixing wetland shrub, Betula platyphylla var. japonica, and Rhododendron japonicum in Ozegahara moor, an oligotrophic moor in Central Japan. Net photosynthetic rate saturated with irradiance (Pmax) of M. gale was 15.2-16.5 μmol(CO2) m-2 s-1, higher than those of the other species throughout the growing season. Pmax was positively correlated with leaf N content among the three species. The large leaf N content in M. gale was due to N2-fixation in root nodules. In a comparison of M. gale in two habitats, Pmax, leaf N content, and root nodule development were larger in the wetter habitat. M. gale showed high E and no midday depression of Pmax even under high irradiance and large vapour pressure deficit between leaves and ambient air on a midsummer day. These traits of photosynthesis and water relations were associated with the dominance of this shrub in wetter sites such as stream sides and hollows. and K, Maeda ... [et al.].
To determine whether PHEMA [poly(2-hydroxyethylmethacrylate)] is suitable for portal vein embolization in patients scheduled to right hepatectomy and whether it is as effective as the currently used agent (a histoacryl/lipiodol mixture). Two groups of nine patients each scheduled for extended right hepatectomy for primary or secondary hepatic tumor, had right portal vein embolization in an effort to induce future liver remnant (FLR) hypertrophy. One group had embolization with PHEMA, the other one with the histoacryl/lipiodol mixture. In all patients, embolization was performed using the right retrograde transhepatic access. Embolization was technically successful in all 18 patients, with no complication related to the embolization agent. Eight patients of either group developed FLR hypertrophy allowing extended right hepatectomy. Likewise, one patient in each group had recanalization of a portal vein branch. Hist ology showed that both embolization agents reach the periphery of portal vein branches, with PHEMA penetrating somewhat deeper into the periphery. PHEMA has been shown to be an agent suitable for embolization in the portal venous system comparable with existing embolization agent (histoacryl/lipiodol mixture)., J. H. Peregrin, R. Janoušek, D. Kautznerová, M. Oliverius, E. Sticová, M. Přádný, J. Michálek., and Obsahuje bibliografii
The paper deals with results of special fatigue life tests. Random processes of different power spectral densities loaded tube specimens made of a mild carbon steel ČSN 411523.1 (11523.1), notched by a perpendicular hole. It has been found that fatigue lives build similar S-N curves like by harmonic loadings, when the standard deviation s^d of peaks of an effective damaging stress and number of loading blocks Nb are used instead of amplitudes oa, and number of cycles Na, respectively. S-N curves of unaxial and multiaxial loading are compared in the paper.
Leaf chlorophyll (Chl) concentration can be an indicator of plant health, including photosynthetic potential and nutrient status. In some cases, this measure can indicate the degree to which plants are water-stressed. Traditional methods of measuring Chl concentration have involved a destructive sampling technique: extraction and spectrophotometric analysis. A compatible nondestructive method to measure leaf Chl concentration exists and applies transmittance spectroscopy to plants with a Minolta SPAD-502 meter. These techniques were evaluated by comparing leaf Chl concentration in big bluestem (Andropogon gerardii). Leaves were sampled from plants representing three ecotypes (originating from Central Kansas, Eastern Kansas, and Illinois, USA) and two cultivars of A. gerardii growing in Hays, Kansas, USA. Leaf Chl concentration was measured using nondestructive and destructive techniques. We documented a saturating relationship between destructively measured leaf Chl concentration and SPAD index resulting from a decelerating change in SPAD index as Chl concentration increased. The comparison of A. gerardii ecotypes and cultivars demonstrated highest Chl concentration in the ecotype and cultivar from areas with historically low precipitation, Central Kansas and A. gerardii var. hallii, respectively. A high ratio of Chl a to Chl b is an index of drought adaptation and was also manifested in A. gerardii from drier regions. Thus, drought-adapted ecotypes and cultivars might be able to maintain high photosynthetic productivity and protect photosystem II during dry periods. Conversely, the ecotypes and cultivar originating from areas with higher precipitation had lower leaf Chl and a lower Chl a/b ratio., K. L. Caudle, L. C. Johnson, S. G. Baer, B. R. Maricle., and Obsahuje bibliografii
The aim of this study was to investigate the effects of troglitazone (TRO) - a new insulin-sensitizing agent - on some metabolic parameters in an experimental model of hypertriglyceridemia and insulin resistance, hereditary hypertriglyceridemic rats, and to compare its effects with those of vitamin E, an antioxidant agent. Three groups of the above rats were fed diets with a high content of sucrose (70 % of energy as sucrose) for four weeks. The first group was supplemented with TRO (120 mg/kg diet), the second one with vitamin E (500 mg/kg diet), and the third group served as the control. Vitamin E supplementation did not lower serum triglycerides (2.42±0.41 vs. 3.39±0.37 mmol/l, N.S.) while TRO did (1.87±0.24 vs. 3.39±0.37 mmol/l, p<0.01). Neither TRO nor vitamin E influenced the serum levels of free fatty acids (FFA). Both drugs influenced the spectrum of fatty acids in serum phospholipids - TRO increased the levels of polyunsaturated fatty acids (PUFA) n-6 (36.04±1.61 vs. 19.65±1.56 mol %, p<0.001), vitamin E increased the levels of PUFA n-3 (13.30±0.87 vs. 6.79±0.87 mol %, p<0.001) and decreased the levels of saturated fatty acids (32.97±0.58 vs. 51.45±4.01 mol %, p<0.01). In conclusion, TRO lowered the level of serum triglycerides but vitamin E did not have this effect in hypertriglyceridemic rats. Compared with TRO, vitamin E had a different effect on the spectrum of fatty acids in serum phospholipids., Š. Chvojková, L. Kazdová, J. Divišová., and Obsahuje bibliografii
A cytoskeletal network contributes significantly to intracellular regulation of mechanical stresses, cell motility and cellular mechanics. Thus, it plays a vital role in defining the mechanical behaviour of the cell. Among the wide range of models proposed for dynamic behaviour of cytoskeleton, the soft glassy rheology model has gained special attention due to the resemblance of its predictions with the mechanical data measured from experiment. The soft glassy material, theory of soft glassy rheology and experiment on cytoskeleton has been discussed, which leads to a discussion of the unique features and flaws of the model. The soft glassy rheological model provides a unique explanation of the cytoskeleton ability to deform, flow and remodel. and Obsahuje seznam literatury
For lower-semicontinuous and convex stochastic processes Zn and nonnegative random variables ϵn we investigate the pertaining random sets A(Zn,ϵn) of all ϵn-approximating minimizers of Zn. It is shown that, if the finite dimensional distributions of the Zn converge to some Z and if the ϵn converge in probability to some constant c, then the A(Zn,ϵn) converge in distribution to A(Z,c) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.
Cost-benefit analysis of foliar construction and maintenance costs and of carbon assimilation of leaves of differing life-span were conducted using two evergreen, three semi-deciduous, and three deciduous tree species of savannas of north Australia. Rates of radiant-energy-saturated CO2 assimilation (Pmax) and dark respiration were measured and leaves were analysed for total nitrogen, fat, and ash concentrations, and for heat of combustion. Specific leaf area, and leaf N and ash contents were significantly lower in longer-lived leaves (evergreen) than shorter-lived leaves (deciduous) species. Leaves of evergreen species also had significantly higher heat of combustion and lower crude fat content than leaves of deciduous species. On a leaf area basis, Pmax was highest in leaves of evergreen species, but on a leaf dry mass basis it was highest in leaves of deciduous species. Pmax and total Kieldahl N content were linearly correlated across all eight species, and foliar N content was higher in leaves of deciduous than evergreen species. Leaf construction cost was significantly higher and maintenance costs were lower for leaves of evergreen than deciduous species. Maintenance and construction costs were linearly related to each other across all species. Leaves of evergreen species had a higher cost-benefit ratio compared to leaves of deciduous species but with longer lived leaves, the payback interval was longer in evergreen than deciduous species. These results support the hypotheses that longer lived leaves are more expensive to construct than short-lived leaves, and that a higher investment of N into short-lived leaves occurs which supports a higher Pmax over a shorter payback interval. and D. Eamus ... [et al.].
The model couples stomatal conductance (gs) and net photosynthetic rate (PN) describing not only part of the curve up to and including saturation irradiance (Imax), but also the range above the saturation irradiance. Maximum stomatal conductance (gsmax) and Imax can be calculated by the coupled model. For winter wheat (Triticum aestivum) the fitted results showed that maximum PN
(Pmax) at 600 µmol mol-1 was more than at 350 µmol mol-1 under the same leaf temperature, which can not be explained by the stomatal closure at high CO2 concentration because gsmax at 600 µmol mol-1 was less than at 350 µmol mol-1. The irradiance-response curves for winter wheat had similar tendency, e.g. at 25 °C and 350 µmol mol-1 both PN and gs almost synchronously reached the maximum values at about 1 600 µmol m-2 s-1. At 25 °C and 600 µmol mol-1 the Imax corresponding to Pmax and
gsmax was 2 080 and 1 575 µmol m-2 s-1, respectively. and Z.-P. Ye, Q. Yu.