Backward erosion piping is driven by seepage forces acting on the soil grains at the downstream end of the seepage path. A new device for the laboratory testing of backward erosion progression was developed and tested. The device consists of a plexiglass prism at which the seepage path has been predefined. The prism was equipped with an inflow consisting of gravel separated from tested sand by a strainer. The hydraulic gradient along the seepage pipe was observed by a set of piezometers and pressure cells, and the seepage discharge was measured volumetrically. The transported sediment was trapped in a vertical cone located downstream from the device. The progression of the seepage path, the piezometric heads and the trapped material was observed by two synchronous cameras. 15 trial tests have been carried out to date, and from these, the interim results are presented.
A new copepod species, Acanthochondria sagitta sp. n., is described based on specimens collected from the flounder Xystreurys rasile (Jordan) (Pleuronectiformes, Paralichthyidae), caught in the coastal waters off Necochea, Buenos Aires Province, Argentina. The new species differs from its congeners by the following combination of characters: presence of three pairs of cephalic outgrowths; the triangular shape of the trunk with diverging postero-lateral processes; leg 2 of an intermediate shape between Types C and D, which projects laterally from the trunk, and Type B-V antennule bearing two proximal processes (one ventral and one dorsal) on the swollen basal portion.
A new species of parasitic copepod Anchistrotos tangi sp. n. (Cyclopoida: Taeniacanthidae) is described based on adult female specimens collected from the gills of hilsa shad, Tenualosa ilisha (Hamilton, 1822) (Actinopterygii: Clupeidae) captured off Iraq. The new species differs from its congeners by having the following combination of characters in the adult female: 1) the rostral area sclerotised; 2) the presence of row of spinules on the proximal and distal margins of the anal somite; 3) the maxilliped claw with 2 long whip-like setae just crossing the distal edge of claw with serrated terminal margin; and 4) the leg 5 ornamented with patched spinules distally. This is the ninth nominal species of Anchistrotos Brian, 1906.
Australotaenia de Chambrier et de Chambrier, 2010 has been proposed to accommodate two species of proteocephalidean cestodes from hylid frogs (Litoria spp.) in Australia. Recently, apparently congeneric cestode, for which the name A. bunthangi sp. n. is proposed, was found in the homalopsid snake Enhydris enhydris (Schneider) (Serpentes: Homalopsidae) from South-East Asia (Cambodia). This finding indicates a much wider range of definitive hosts of species of this genus, i.e. amphibians and reptiles, which is exceptional among proteocephalideans. Postcyclic parasitism, i.e. predation of the definitive host infected with sexually mature parasites, cannot be excluded but does not seem to be probable. In addition, the occurrence of A. bunthangi in the former Indochina extends the range of the geographical distribution of the genus to another zoogeographical region. The new species differs from both species of Australotaenia in the relative size of an apical organ, the diameter of which equals to that of suckers (versus much smaller in the remaining species, in which the width of the apical organ represents less than 2/3 of the diameter of the suckers), much smaller scolex and suckers (width 150 μm and diameter of suckers 50-55 μm versus 245-420 μm and 100-140 μm, respectively), and longer body (224 mm versus 57-121 mm). In addition, A. bunthangi differs from A. hylae (Johnston, 1912) (type-species of the genus) by the number of testes (46-64 versus 74-106 in A. hylae) and by the ovary width/proglottis width ratio (55-65% versus 68-71% in A. hylae). Australotaenia bunthangi differs from A. grobeli de Chambrier et de Chambrier, 2010 by relative size of the cirrus-sac (its length represents 18-24% of the width of the proglottis versus 27-33% in A. grobeli) and by the diameter of the embryophore (25-27 µm versus 18-23 µm in A. grobeli).
One of three (33%) captive specimens of Oustalet's chameleon, Furcifer oustaleti (Mocquard) originally from Madagascar and housed at the Oklahoma City Zoological Park Herpetarium, Oklahoma County, Oklahoma, USA, was found to be passing an undescribed species of Choleoeimeria in its faeces. Oocysts of Choleoeimeria fischeri sp. n. were cylindroidal, 30.3 × 16.8 (28-34 × 15-18) µm, with a smooth, bilayered wall and a length/width ratio (L/W) of 1.8. A micropyle and oocyst residuum was absent but a fragmented polar granule was often present. Sporocysts were ovoidal, 9.6 × 8.0 (9-10 × 7-9) µm, with an L/W of 1.2. Stieda, sub-Stieda, and para-Stieda bodies were absent. The sporocyst residuum consists of large globules dispersed between sporozoites. Sporozoites were elongate, 8.6 × 2.9 (8-10 × 2-3) µm, with an elongate posterior refractile body. The new species represents the second coccidian described from this lizard.
Four out of twenty (20%) specimens of the lizard Scincus hemprichii Wiegmann, collected in Saudi Arabia were infected with a previously undescribed species of Choleoeimeria. Oocysts of Choleoeimeria jazanensis sp. n. are cylindroidal, 26 × 15 µm, with a smooth bilayered wall and a shape index of 1.7. Oocyst residuum and micropyle are absent. Sporocysts are subspherical, 10 × 7 µm, with a shape index of 1.3. The Stieda body is absent. Sporozoites are banana-shaped, 10 × 3 µm, with one refractile body and enclosed the fine granulated sporocyst residuum. The endogenous development is confined to the gall bladder epithelium, with infected cells being displaced from the epithelium layer towards lumen. Mature meronts are subspherical and estimates to produce 9-12 merozoites. Microgamonts are spherical in shape with diameter of 13 µm. Macrogamonts are subspherical with a prominent nucleus in centre and wall-forming bodies at periphery.
A new nematode species, Comephoronema multipapillatum sp. n. (Cystidicolidae), is described from the anterior intestine and caecum of the squirrelfish Holocentrus adscensionis (Osbeck) (Beryciformes: Holocentridae) collected in Angra dos Reis, State of Rio de Janeiro, offshore Brazil. The new species was placed in Comephoronema Layman, 1933 by having an oval oral aperture, four submedian labia, four bilobed submedian sublabia, two narrow lateral pseudolabia and four single cephalic papillae, but mainly by numerous precloacal papillae in males (more than six pairs), in which it differs from species of the otherwise morphologically similar genus Ascarophis van Beneden, 1871. Comephoronema multipapillatum sp. n. can be easily distinguished from other congeners based on the high number of precloacal papillae in males (18 pairs + one unpaired) and also by the bidentate plate structure on the inner margin of pseudolabia, mature eggs with two long filaments on a single pole, body length of male (9.4-11.5 mm) and female (10.2-19.9 mm), left spicule size (222-278 µm) and length ratio of spicules (1 : 2.2-2.8). This is the fifth nominal species of Comephoronema, the first nematode registered parasitizing H. adscensionis and the first species of the genus in the Neotropical part of the Atlantic Ocean.
A new species of the cyclopoid copepod genus Ergasilus von Nordmann, 1832 is described based on adult female specimens removed from the gills of the yellow snapper Lutjanus argentiventris (Peters) and the yellowfin snook Centropomus robalito Jordan et Gilbert from a Pacific coastal system of Mexico. The new species Ergasilus davidi sp. n. has a combination of characters that includes a two-segmented first leg endopod, a three-segmented fourth leg endopod, and the presence of a single seta on the first antennular segment. These characters are shared with 14 other congeners known mainly from Brazil and North America. It differs from these other species in the armature and ornamentation of legs 1 and 4, the shape of the body, and the structure and ornamentation of the antennae. Additional characters include a maxillar basis armed with blunt teeth, distally bent maxillular setae, and naked margins of first exopodal segments of legs 2-4. Previous regional records of Ergasilus sp. from both fish species are probably assignable to E. davidi. The prevalence and intensity of infection was estimated for both teleost species and agrees to previous data. Based on other records of the genus from several other teleost species in the surveyed area and adjacent zones of the Eastern Pacific, it is presumed that the new species could have a wider range of hosts. The new species represents the first Ergasilus described from Mexican waters of the Pacific. Overall, the genus remains poorly known in Central America and Mexico.
A new species of Chondracanthidae (Copepoda: Cyclopoida), Heterochondria orientalis sp. n., is described based on specimens of both sexes collected from the gill rakers and the inner side of the operculum of the many-banded sole, Zebrias fasciatus (Basilewsky), from the Yellow Sea, Korea. The new species resembles most closely H. zebriae (Ho, Kim et Kuman, 2000), but can be distinguished from this species and other congeners by the shape of the trunk and length of the antenna, the number of teeth on the mandible and the terminal process of the maxilla, and the structure of the male antennule and maxilliped. Heterochondria orientalis is the first copepod species reported from Z. fasciatus and the first heterochondrid species reported from sole fishes in the Northwest Pacific. A key to distinguish all 10 nominal species of the genus is provided.
Lernanthropus cynoscicola sp.n. (Copepoda: Lernanthropidae), a parasite of sciaenid fish Cynoscion striatus Cuvier from the coast of Argentina, is described and illustrated. The new species resembles five other species of Lernanthropus in general body shape, but it can be distinguished from them by the relatively short and tapered dorsal plate of the 4th leg-bearing segment, the length of the 4th legs being approximately equal to the rest of the body, and other differences. L. trachuri Brian, 1903 is reported for the first time in Argentina on Trachurus lathami from the coast of the Buenos Aires province.