Nanobiophotonics is one of the most recent interdisciplinary scientific disciplines that originated at the frontiers of nanotechnology, photonics and biomedical sciences. The aim of nanobiophotonics is to transfer the medical diagnostics and therapy to the level of individual proteins and biologically active molecules, acting as cornerstones of the living cell. One of the key roles in its advancement can be attributed to the development of ultrafast pused lasers. These allowed to cross-combine spectroscopic, imaging and time-resolved methods and provide complex, multi-modal information about biological structures and phenomena on the nanometer scale. In our contribution we give an overview of the most important moments mapping the path from the discovery of the first laser to the current state of nanobiophotonic technologies in the world, and perspectives of this new scientific field in Slovakia., Nanobiofotonika je jedným z najmladších interdisciplinárnych vedeckých smerov, ktorý vznikol na pomedzí nanotechnológií, fotoniky a biomedicínskych vied s cieľom preniesť medicínsku diagnostiku a terapiu na úroveň proteínov a biologicky aktívnych molekúl - základných jednotiek živej bunky. Kľúčovú úlohu v jeho rozvoji má predovšetkým vývoj pulzných laserov s ultrakrátkymi impulzmi, ktoré umožnili prepojiť spektroskopické, zobrazovacie a časovo rozlíšené metódy a poskytujú dnes komplexnú multimodálnu informáciu o biologických štruktúrach a javoch na nanometrovej škále. V našom príspevku uvádzame prehľad vybraných významných momentov mapujúcich cestu od objavenia prvého lasera cez súčasny stav nanobiofotonických technológií k perspektívam tejto novej vednej oblasti na Slovensku., Dušan Chorvát ml., Alžbeta Chorvátová., and Obsahuje bibliografii
The article is directed to the nanophotonics dealing with optical, electrooptical and optoelectrical phenomena under standpoint of photons and photon flows and their control in nanomaterials and optical and electronical nanosystems. It deals with relationship between the electromagnetic (photonic) radiation and plasmons which mutual conversions belong to fundamental phenomena of the plasmon nanophotonics, together with propagation and detection of plasmons. After linearized mathematical reprezentation of plasmons, the article presents examples of two basic concrete methods for effective mutual conversion (coupling) of the optical radiations and surface plasmons in the nanophotonical systém formed by a dielectric-metal interface., Článek je zaměřen k nanofotonice, která obecně studuje optické, elektrooptické a optoelektrické jevy z hlediska fotonů a fotonových proudů a jejich kontrolovaného ovládání v nanomateriálech a optických a elektronických nanosystémech. Týká se vztahu mezi elektromagnetickým (fotonovým) zářením a plazmony, jejichž vzájemné přeměny patří vedle šíření a detekce plazmonů k fundamentálním jevům plazmonové nanofotoniky. Po linearizované matematické reprezentaci plazmonů jsou v článku prezentovány příklady dvou základních konkrétních metod k účinné vzájemné přeměně (vazbě) optických záření a povrchových plazmonů u nanofotonického systému, tvořeného rozhraním mezi dielektrikem a kovem., and Autoři: Jan Hrdý a Jan Hrdý jr.
The article contains nanophotonical problems of realization of propagation of the plasmons formed by an excitation optical radiation in simple plasmonic waveguides created by a metallic nanostripe, metallic or semiconducting nanowire, metalic nanoparticle or linear chain of more metallic nanoparticles, coupled ellectromagneticaly. It is directed especially to description of contemporary basic experimental arrangements for observing and measuring the energetic transport of plasmons together with introduction of some typical graphic dependences for a metallic nanoparticle Au, couple of such nanoparticles and for a linear chain of more identical nanoparticles Ag., Článek obsahuje nanofotonickou problematiku realizace šíření plazmonů generovaných excitačním optickým zářením v jednoduchých plazmonových vlnovodech tvořených kovovým nanoproužkem, kovovým nebo polovodičovým nanodrátkem, kovovou nanočásticí nebo lineárním seřazením více elektromagneticky vzájemně vázaných kovových nanočástic. Je hlavně zaměřen k popisu současných základních experimentálních uspořádání pro pozorování a měření energetického přenosu plazmonů s uvedením některých typických grafických závislostí pro kovovou nanočástici Au, dvojici takových nanočástic a pro lineární řetězec více stejných nanočástic Ag., and Autoři: Jan Hrdý a Jan Hrdý jr.