A possibility of using synthetic analogues of juvenile hormone (juvenoids) to disrupt imaginal diapause of the apple blossom weevil, Anthonomus pomorum females was demonstrated. Out of three preparations tested (methoprene, fenoxycarb and W-328) methoprene and fenoxycarb appeared to be effective. Sensitivity to juvenile hormone analogues develops early after imaginal emergence (even before the female starts to feed) and lasts throughout the whole aestivo-hibernation dormancy. Although the juvenoids could stimulate the onset of oogenesis at any time during diapause, the propensity of the ovaries to form normal eggs developed only during hibernation part of the dormancy; in earlier stages of diapause accumulation of yolk was observed but matured eggs were not produced. Methoprene treatment caused marked increase of locomotory activity accompanied with decrease of dry weight, increase of water content, depletion of trehalose resources, decrease of cold hardiness and, finally, 100% mortality within four weeks in the weevils treated during their feeding or aestivation stages. Although similar changes were observed in the treated pre-feeding weevils, they later recovered and survived until next spring without apparent loss of cold hardiness. A possibility of designing a control method based on this principle is discussed and the results of small-scale field trials that support its plausibility are reported.
High altitude profoundly influenced plant diversity and distribution on mountains of southern Sinai (Egypt). Plants exhibiting the C3-mode of photosynthesis were widely distributed along the altitudinal transect. Plants exhibiting the C4-mode were restricted below an altitude of about 1400 m above sea level. The transition from C3-dominated areas to C4-dominated areas occurred between 1200 and 1400 m a.s.l. and O. H. Sayed, M. K. Mohamed.
Field trials under rain-fed conditions at the International Center for Tropical Agriculture (CIAT) in Colombia were conducted to study the comparative leaf photosynthesis, growth, yield, and nutrient use efficiency in two groups of cassava cultivars representing tall (large leaf canopy and shoot biomass) and short (small leaf canopy and shoot biomass) plant types. Using the standard plant density (10,000 plants ha-1), tall cultivars produced higher shoot biomass, larger seasonal leaf area indices (LAIs) and greater final storage root yields than the short cultivars. At six months after planting, yields were similar in both plant types with the short ones tending to form and fill storage roots at a much earlier time in their growth stage. Root yield, shoot and total biomass in all cultivars were significantly correlated with seasonal average LAI. Short cultivars maintained lower than optimal LAI for yield. Seasonal PN, across cultivars, was 12% greater in short types, with maximum values obtained in Brazilian genotypes. This difference in PN was attributed to nonstomatal factors (i.e., anatomical/biochemical mesophyll characteristics). Compared with tall cultivars, short ones had 14 to 24 % greater nutrient use efficiency (NUE) in terms of storage root production. The lesser NUE in tall plants was attributed mainly to more total nutrient uptake than in short cultivars. It was concluded that short-stemmed cultivars are superior in producing dry matter in their storage roots per unit nutrient absorbed, making them advantageous for soil fertility conservation while their yields approach those in tall types. It was recommended that breeding programs should focus on selection for more efficient short- to medium-stemmed genotypes since resource-limited cassava farmers rarely apply agrochemicals nor recycle residual parts of the crop back to the soil. Such improved short types were expected to surpass tall types in yields when grown at higher than standard plant population densities (>10,000 plants ha-1) in order to maximize irradiance interception. Below a certain population density (<10,000 plants ha-1), tall cultivars should be planted. Findings were discussed in relation to cultivation and cropping systems strategies for water and nutrient conservation and use efficiencies under stressful environments as well as under predicted water deficits in the tropics caused by trends in global climate change. Cassava is expected to play a major role in food and biofuel production due to its high photosynthetic capacity and its ability to conserve water as compared to major cereal grain crops. The interdisciplinary/interinstitutions research reported here, including, an associated release of a drought-tolerant, short-stem cultivar that was eagerly accepted by cassava farmers, reflects well on the productivity of the CIAT international research in Cali, Colombia., and M. A. El-Sharkawy, S. M. de Tafur
15 years ago a small group of the Czech scientists visited the meeting of European plant exophysiologists in Viterbo starting a new EU projects on elevated CO2 effects. Because of personal involvement of prof. Paul Jarvis, the Czech group was incorporated into this type of European ecophysiological research. On the occasion of the 15th anniversary was prepared a conference covering the topics from stress physiology and elevated CO2 effects from leaves to ecosystems up to impact of climate change on ecosystems. Key findings in regulatory and stress physiology, plant-to-plant interactions and responses to changing environment with emphases on single and/or combined effects of CO2, water and temperature were presented. and Michal Marek.
Metabolic rate, body temperature, and thermal conductance were determined in the greater long-tailed hamster (Cricetulus triton) at a temperature range of 5-36 °C. Oxygen consumption was measured by using a closed circuit respirometer. The thermal neutral zone was 39-34 °C. Within a temperature range of 5-31 °C hamsters could maintain a stable body temperature at a mean of 36.7±0.1 °C. Mean basal metabolic rate within thermal neutrality was 1.23±0.02 ml O2/g.h. Total thermal conductance was maintained within a temperature range of 5-15 °C (mean = 0.12±0.00 ml O2/g.h °C). The ecophysiological properties of the greater long-tailed hamster were: (1) a higher metabolic rate than predicted by the allometric scaling equation for eutherian mammals, but lower than that predicted for all rodents and slightly higher than predicted for cricetid rodents; (2) the body temperature was relatively low; (3) thermal conductance was relatively higher than predicted on the basis of body weight. All these characteristics are closely related to the species' life style (i.e. a burrowing, solitary, nocturnal species that feeds mainly on crop seeds and a small fraction of young crop shoots and insects). Greater long-tailed hamsters are primarily distributed in the northern Yangtse River area of China and cannot survive in extremely dr and alpine areas. We propose that the ecophysiological characteristics of the species might constrain its distribution and range extension into extreme deserts, high altitudes and cold areas.
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions. and R. V. Ribeiro ... [et al.].