a1_Survey work of batoid elasmobranchs in the eastern Atlantic and Indo-Pacific revealed multiple species of a new genus of cestode. Stillabothrium Healy et Reyda gen. n. (Rhinebothriidea: Escherbothriidae) is unique in its possession of an even number of non-medial longitudinal septa in the posterior portion of the bothridia, resulting in a series of loculi that are longer than wide (i.e. vertically oriented) and are arranged in columns. Five new species of Stillabothrium are described, S. ashleyae Willsey et Reyda sp. n., S. davidcynthiaorum Daigler et Reyda sp. n., S. campbelli Delgado, Dedrick et Reyda sp. n., S. hyphantoseptum Herzog, Bergman et Reyda sp. n., S. jeanfortiae Forti, Aprill et Reyda sp. n., and two species are formally transferred to the genus, S. amuletum (Butler, 1987) comb. n., and S. cadenati (Euzet, 1954) comb. n., the latter of which is redescribed. The species differ in the configuration of the other bothridial septa and in proglottid anatomy. Species of Stillabothrium were found parasitising a total of 17 species of batoid elasmobranchs of the genera Dasyatis Rafinesque, Glaucostegus Bonaparte, Himantura Müller et Henle, Pastinachus Rüppell, Rhinobatos Linck and Zanobatus Garman, including several host species that are likely new to science. A phylogenetic hypothesis based on Bayesian analysis of 1 084 aligned positions of the D1-D3 region of 28S rDNA for 27 specimens representing 10 species of Stillabothrium and two outgroup species supported the monophyly of Stillabothrium. These results also supported morphologically determined species boundaries in all cases in which more than one specimen of a putative species was included in the analysis. Host specificity appears to vary across species of Stillabothrium, with the number of host species parasitised by each species of Stillabothrium ranging from one to four., a2_The geographic distribution of species of Stillabothrium spans the eastern Hemisphere, including the eastern Atlantic (coastal Senegal) and several locations in the Indo-Pacific (coastal Vietnam, Borneo and Australia). In addition, Phyllobothrium biacetabulatum Yamaguti, 1960 is formally transferred into family Escherbothriidae, although its generic placement remains uncertain (species incertae sedis)., Florian B. Reyda, Claire J. Healy, Andrew R. Haslach, Timothy R. Ruhnke, Tara L. Aprill, Michael P. Bergman, Andrew L. Daigler, Elsie A. Dedrick, Illari Delgado, Kathryn S. Forti, Kaylee S. Herzog, Rebecca S. Russell, Danielle D. Willsey., and Obsahuje bibliografii
A new species of tetraphyllidean cestode in the genus Trilocularia is described from an undescribed shark species, Squalus cf. mitsukurii, off the coast of South Africa. Trilocularia eberti sp. n. is the second known member of its genus, and like its congener, T. gracilis (Olsson, 1866-1867) Olsson, 1869, is extremely hyperapolytic, dropping proglottids from its strobila while they are still very immature. Characteristic of the genus, it possesses a distinctive scolex with triloculated bothridia, but differs conspicuously from its congener in its possession of an anterior loculus that is much larger in width relative to the paired posterior loculi, and also in its possession of an anterior, enlarged region of its free proglottids that is triangular with a slit-like ventral aperture, rather than rounded and cup-like. This anterior region of the free proglottid is used in attachment, and its development is described. For assessment of fecundity, an attempt was made to record all free proglottids of all ages found in both host individuals, and yielded an average estimate of 362 free proglottids being produced per individual worm of T. eberti sp. n. Both Trilocularia species parasitize sharks of the genus Squalus, and given the host specificity typically exhibited by tetraphyllideans and preliminary examinations of other members of this shark genus, it is likely that other Squalus species will be found to host additional new Trilocularia species.
Australotaenia de Chambrier et de Chambrier, 2010 has been proposed to accommodate two species of proteocephalidean cestodes from hylid frogs (Litoria spp.) in Australia. Recently, apparently congeneric cestode, for which the name A. bunthangi sp. n. is proposed, was found in the homalopsid snake Enhydris enhydris (Schneider) (Serpentes: Homalopsidae) from South-East Asia (Cambodia). This finding indicates a much wider range of definitive hosts of species of this genus, i.e. amphibians and reptiles, which is exceptional among proteocephalideans. Postcyclic parasitism, i.e. predation of the definitive host infected with sexually mature parasites, cannot be excluded but does not seem to be probable. In addition, the occurrence of A. bunthangi in the former Indochina extends the range of the geographical distribution of the genus to another zoogeographical region. The new species differs from both species of Australotaenia in the relative size of an apical organ, the diameter of which equals to that of suckers (versus much smaller in the remaining species, in which the width of the apical organ represents less than 2/3 of the diameter of the suckers), much smaller scolex and suckers (width 150 μm and diameter of suckers 50-55 μm versus 245-420 μm and 100-140 μm, respectively), and longer body (224 mm versus 57-121 mm). In addition, A. bunthangi differs from A. hylae (Johnston, 1912) (type-species of the genus) by the number of testes (46-64 versus 74-106 in A. hylae) and by the ovary width/proglottis width ratio (55-65% versus 68-71% in A. hylae). Australotaenia bunthangi differs from A. grobeli de Chambrier et de Chambrier, 2010 by relative size of the cirrus-sac (its length represents 18-24% of the width of the proglottis versus 27-33% in A. grobeli) and by the diameter of the embryophore (25-27 µm versus 18-23 µm in A. grobeli).
Paraberrapex atlanticus sp. n. (Cestoda: Lecanicephalidea) is described from the spiral intestine of the angel shark Squatina guggenheim Marini from coastal waters off Buenos Aires Province, Argentina. Paraberrapex atlanticus sp. n. can be distinguished from the only species described in the genus, P. manifestus Jensen, 2001 in having cocoons 5-6 times longer with more eggs per cocoon, the extension of the uterine duct, the distribution of vitelline follicles, and the size and density of microtriches on the bothridial surfaces. The presence of P. atlanticus sp. n. in S. guggenheim confirms the specificity of Paraberrapex Jensen, 2001 for squatiniform sharks., Leonardo D. Mutti, Verónica A. Ivanov., and Obsahuje bibliografii
Tapeworms of the genus Caryophyllaeus Gmelin, 1790 (Caryophyllidea: Caryophyllaeidae), common parasites of cyprinid fishes, are reviewed and taxonomic status of 42 nominal taxa that have been placed in the genus during its long history is clarified. The following seven species occurring in the Palaearctic Region are recognised as valid: C. laticeps (Pallas, 1781), C. auriculatus (Kulakovskaya, 1961), C. balticus (Szidat, 1941) comb. n. (syn. Khawia baltica Szidat, 1941), C. brachycollis Janiszewska, 1953, C. fimbriceps Annenkova-Chlopina, 1919, C. syrdarjensis Skrjabin, 1913, and newly described Caryophyllaeus chondrostomi sp. n. (= C. laticeps morphotype 4 of Bazsalovicsová et al., 2014) from common nase, Chondrostoma nasus (Linnaeus), found in Austria and Slovakia. The new species differs by the paramuscular or cortical position of preovarian vitelline follicles, a large, robust body (up to 64 mm long), conspicuously long vas deferens, flabellate scolex with small wrinkles on the anterior margin, and anteriormost testes located in a relatively short distance from the anterior extremity. Caryophyllaeus kashmirenses Mehra, 1930 and Caryophyllaeus prussicus (Szidat, 1937) comb. n. are considered to be species inquirendae, C. truncatus von Siebold in Baird, 1853 and C. tuba von Siebold in Baird, 1853 are nomina nuda. Data on the morphology, host spectra, distribution and known life-cycles of valid species are provided. Phylogenetic interrelations of four species of the genus including its type species and newly described C. chondrostomi were assessed based on an analysis of sequences of lsrDNA and cox1. A key to identification of all valid species of Caryophyllaeus is also provided., Daniel Barčák, Mikuláš Oros, Vladimíra Hanzelová, Tomáš Scholz., and Obsahuje bibliografii
In an effort to expand knowledge of Clade 3-one of the ten clades that compose the non-monophyletic order 'Tetraphyllidea' all current members of which parasitise orectolobiform sharks-we targeted species of orectolobiform sharks that had not previously been examined for 'tetraphyllidean' cestodes. That work led to the discovery of three new species off Australia and Taiwan. Ambitalveolus gen. n. was erected to accommodate these species. Ambitalveolus costelloae gen. n. et sp. n., Ambitalveolus kempi sp. n., and Ambitalveolus penghuensis sp. n. differ from one another in scolex size, genital pore position, and number of marginal loculi, proglottids, and testes. Among 'tetraphyllideans', the new genus most closely resembles the two other genera in Clade 3. It differs from Carpobothrium Shipley et Hornell, 1906 in lacking anterior and posterior flap-like extensions of its bothridia; instead, its bothridia are essentially circular. It differs from Caulopatera Cutmore, Bennett et Cribb, 2010 in that its vitelline follicles are in two lateral bands, rather than circum-medullary, and in that its bothridia bear, rather than lack, conspicuous marginal loculi. A key to the three genera in Clade 3 is provided. A phylogenetic analysis including new sequence data for one of the three new species of Ambitalveolus gen. n., the only species of Caulopatera, and all four described species and one undescribed species of Carpobothrium supports previously hypothesised close affinities between Caulopatera and Carpobothrium, with the new genus as their sister group. This is the first report of 'tetraphyllidean' cestodes from the orectolobiform shark family Brachaeluridae Applegate. The association of the new species with orectolobiform sharks is consistent with those of the other members of Clade 3. However, whereas species of Carpobothrium and Caulopatera parasitise members of the hemiscylliid genus Chiloscyllium Müller et Henle, species of Amitalveolus gen. n. parasitise members of the Brachaeluridae and Orectolobidae Gill.
During a parasitological survey of teleosts and elasmobranchs in the Argentine Sea, 3 species of eutetrarhynchids were collected from the batoids Myliobatis goodei Garman and Psammobatis bergi Marini, and the shark Mustelus schmitti Springer. The specimens collected from Mu. schmitti were identified as Dollfusiela vooremi (São Clemente et Gomes, 1989), whereas the specimens from My. goodei and Ps. bergi resulted in new species of Dollfusiella Campbell et Beveridge, 1994 and Parachristianella Dollfus, 1946, respectively. Dollfusiella taminii sp. n. from Ps. bergi is characterised by a distinct basal armature with basal swelling and a heteroacanthous homeomorphous metabasal armature with 7-9 falcate hooks per principal row. Parachristianella damiani sp. n. from My. goodei lacks a distinct basal armature, having 2-3 initial rows of uncinate hooks, a heteroacanthous heteromorphous metabasal armature with the first principal row of small hooks, followed by rows with 10-14 large hooks. This is the first record of Parachristianella in the southwestern Atlantic. The amended description of D. vooremi includes the detailed description of the tentacular armature, including SEM micrographs of all tentacular surfaces. This species is characterised by a basal armature consisting of rows of uncinate and falcate hooks, a basal swelling and a metabasal armature with billhooks on the antibothrial surface and uncinate hooks on the bothrial surface. The scolex peduncle of D. vooremi is covered with enlarged spinitriches. This species is restricted to carcharhiniform sharks, since the report of D. vooremi in Sympterygia bonapartii Müller et Henle off Bahía Blanca (Argentina) is dubious.
Taeniosis-cysticercosis caused by Taenia crassiceps (Zeder, 1800) is a useful experimental model for biomedical research, in substitution of Taenia solium Linnaeus, 1758, studied during decades to develop effective vaccination, novel anti-helminthic drugs and diagnostic tools. Cysticercosis in mouse (Mus musculus Linnaeus) is achieved by the larval subculturing of the Wake Forest University (WFU) strain of T. crassiceps. Golden hamster, Mesocricetus auratus (Waterhouse), has been shown to be the most suitable host for adult forms of parasite in experimental taeniosis. Metacestodes of T. crassiceps WFU multiply by budding without restrictions once inoculated into the mouse, while the number of tapeworms developed from these larvae in hamsters remains highly variable. Three objectives have been proposed to improve the infection of T. crassiceps WFU in hamsters: (1) to re-evaluate the need of immune suppression; (2) to investigate the advantage of infecting hamsters with metacestodes with in vitro protruded scolices; and (3) to compare a number of tapeworms developed from metacestodes subcultured in hamsters against those proliferated in mice. Our results demonstrated that when the evagination of murine metacestodes was high, the number of T. crassiceps WFU adults obtained from hamsters was also high. Immunosuppressive treatment remains relevant for this experimental rodent model. The hamster-to-hamster cysticercosis-taeniosis by T. crassiceps overcame the mouse-to-hamster model in the yield of adult specimens. In vitro scolex evagination and metacestode asexual proliferation in hamsters place this rodent model by T. crassiceps WFU as the most affordable experimental models with taeniids.
The examination of eight spotted skates, Raja straeleni Poll, resulted in the discovery of four new species of Acanthobothrium van Beneden, 1849, namely A. microhabentes sp. n., A. microtenuis sp. n., A. crassus sp. n., and A. dolichocollum sp. n., located off the Western Cape of South Africa. With a total of over 200 valid species of Acanthobothrium recognised worldwide, the use of an integrative approach becomes imperative in the interest of simplifying interspecific comparisons between congeners. In accordance with this, the four new species were incorporated into the category classification system established by Ghoshroy and Caira in 2001, where they were identified as category 2 species, which, at present, includes 47 recognised species of Acanthobothrium. Nevertheless, each of the four new species exhibits postovarian testes, a most intriguing and highly unusual feature among Acanthobothrium, instantly differentiating them from most congeners. This feature has been reported in 12 congeners, which have previously been considered to be restricted to waters of the Indo-Pacific Ocean. Not only do the four new congeners represent the first species of Acanthobothrium reported from southern Africa, but they also represent the first reported species with postovarian testes from the southern Atlantic Ocean. and Regarding the legitimacy of the four new species, only two other category 2 species are reported to exhibit this feature, namely A. popi Fyler, Caira et Jensen, 2009, and A. bobconniorum Fyler et Caira, 2010, to which the four congeners were compared to. Acanthobothrium microhabentes sp. n. is the smallest of the congeners and differs from A. popi and A. bobconniorum by having fewer testes and postovarian testes, a shorter body, fewer proglottids, a shorter scolex, and longer cephalic peduncle. Acanthobothrium microtenuis sp. n. differs from A. popi and A. bobconniorum by having fewer testes and postovarian testes, a shorter scolex, longer cephalic peduncle, and the possession of columnar spinitriches on the anterior region of the terminal proglottid. Acanthobothrium crassus sp.n. differs from A. popi and A. bobconniorum by having fewer postovarian testes, a narrower cirrus-sac, larger vitelline follicles, and a longer cephalic peduncle. Acanthobothrium dolichocollum sp. n. is the longest of the four new species and differs from A. popi and A. bobconniorum by having fewer postovarian testes, more postporal testes, a larger body, more proglottids, larger testes and vitelline follicles, and an exceptionally long cephalic peduncle. Apart from differences in overall size, the four new species differ in a combination of measurements for the scolex, vitelline follicles, muscular pad and cephalic peduncle, and the number of proglottids and testes. The four species were recovered from a previously unexplored host and locality, expanding the host associations and geographical distribution of the genus.
Two new species of two genera of the order Diphyllidea van Beneden in Carus, 1863, Halysioncum Caira, Marques, Jensen, Kuchta et Ivanov, 2013 and Echinobothrium van Beneden, 1849 sensu stricto are described from Aetomylaeus cf. nichofii (Bloch et Schneider) off the Iranian coast of the Persian Gulf. Halysioncum kishiense sp. n. differs from all other congeners in the number of apical hooks with the exception of H. hoffmanorum (Tyler, 2001) and H. pigmentatum (Ostrowski de Núñez, 1971). Halysioncum kishiense sp. n. can be easily differentiated from H. hoffmanorum and H. pigmentatum by the number of hooklets and testis numbers. Echinobothrium parsadrayaiense sp. n. is differentiated from all its congeners except for E. acanthinophyllum Rees, 1961 by its hook formula. The number of spines per column on the cephalic peduncle, the number of testes and possession of a thick-walled rather than thin-walled vagina distinguish E. parsadrayaiense sp. n. from E. acanthinophyllum. To date, with these two new species, five species of Diphyllidea have been reported from the Persian Gulf.